Patents Assigned to Umicore
  • Patent number: 11777082
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 3, 2023
    Assignees: Showa Denko K.K., Umicore
    Inventors: Yasunari Otsuka, Nobuaki Ishii, Nicolas Marx, Stijn Put
  • Patent number: 11702437
    Abstract: The invention relates to a method for producing aqueous preparations of complexes of platinum group metals (PGM) Pt, Pd, Rh and Ir having the general formula [MA/MB/MC (L)a (H2O)b (O2?)c(OH?)d](OH—)e(H+)f, wherein MA=PtII or PdII, MB=PtIV, MC=Rh or Ir, L is a neutral monodentate or bidentate donor ligand, and a is an integer between 1 and 4 (or 2) and/or between 1 and 6 (or 3), b is an integer between 0 and 3 (or 5), c is an integer between 0 and 3 (or 4), d is an integer between 0 and 3 (or 5), e is an integer between 0 and 2 (or 3 or 4) and f is an integer between 0 and 4 (or 5). In the method according to the invention, the hydroxo complexes H2Pd(OH)4 (in the case of MA=PdII), H2Pt(OH)6 (in the case of MA=PtII and MB=PtIV) or H3MC(OH)6 (for MC=RhIII IrIII) are converted in the presence of the donor ligands, wherein at least one hydroxo group of the hydro complex is exchanged. Preferably, the reaction occurs at temperatures in the range of 40 to 110° C.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: July 18, 2023
    Assignee: Umicore AG & Co. KG
    Inventors: Eileen Woerner, Ralf Karch, Andreas Rivas-Nass, Angelino Doppiu
  • Patent number: 11667536
    Abstract: The present invention relates to a method for the preparation of a molecular sieve of the CHA-type as well as catalytic applications thereof.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: June 6, 2023
    Assignee: Umicore AG & Co. KG
    Inventors: Peter Nicolai Ravnborg Vennestrom, Nuria Martin Garcia, Manuel Moliner Marin, Avelino Corma Canos
  • Patent number: 11623874
    Abstract: The invention relates to a process for producing metal carbonyls, wherein a reaction with a reaction mixture containing the following components is conducted in a reactor: (a) at least one metal carboxylate of formula (MeRx)w, wherein Me is a transition metal, R is a monocarboxylate having 6 to 12 carbon atoms, x=1, 2, 3, or 4, and w=1, 2, or 3, (b) carbon monoxide, (c) an aliphatic alcohol having 4 to 7 carbon atoms—preferably, butanol—and (d) a solvent, wherein the average dwell time in the reactor is less than 60 minutes.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: April 11, 2023
    Assignee: Umicore AG & Co. KG
    Inventors: Andreas Rivas Nass, Ruben Ramon Mueller, Angelino Doppiu, Eileen Woerner, Ralf Karch
  • Publication number: 20230108371
    Abstract: An apparatus for reducing emissions that has a combustion turbine that feeds exhaust into a heat recovery steam generator (or HRSG) casing in which is positioned an emission reduction system featuring, in gas flow sequence, a first reducing reductant injector (RRI1), as in an ammonia injection grid, for providing reducing reductant, preferably ammonia, into turbine exhaust travelling within the HRSG, followed by a first SCR reactor positioned downstream of the first RRI1, followed by one of either (i) a turbulence generator (TG) as in a static mixer, or (ii) a second RRI2 as in a second ammonia injection grid, or (iii) an RRI2 with integrated TG supported on injectors of RRI2, then followed by a second SCR reactor. The emission reduction system preferably is free of a separate body oxidation catalyst or a separate body ammonia slip catalyst in an effort to utilize a limited volume within the HRSG. Methods of assembling and operating the ERS or T-H combination with ERS are also featured.
    Type: Application
    Filed: October 5, 2021
    Publication date: April 6, 2023
    Applicant: Umicore AG & Co. KG
    Inventors: Joseph Craig SHARP, Wayne Spencer JONES, Kim Hougaard Pedersen
  • Patent number: 11584764
    Abstract: The invention relates to methods for the production of trialkylindium (InR3), wherein the production takes place in a reaction mixture that contains at least one alkylindium halide, a trialkylaluminum (AlR3), a carboxylate, and a solvent, wherein R is chosen independently of one another from C1-C4 alkyl, and X is chosen independently of one another from Cl, Br, and I.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: February 21, 2023
    Assignee: Umicore AG & Co. KG
    Inventors: Wolf Schorn, Ralf Karch, Annika Frey, Angelino Doppiu, Andreas Rivas Nass, Eileen Woerner
  • Patent number: 11588148
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 21, 2023
    Assignees: Umicore, Showa Denko K.K.
    Inventors: Stijn Put, Dirk Van Genechten, Jan Gilleir, Nicolas Marx, Arihiro Muto, Nobuaki Ishii, Masataka Takeuchi
  • Patent number: 11581529
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: February 14, 2023
    Assignee: Umicore
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Patent number: 11577232
    Abstract: The invention is directed to ruthenium-based metathesis catalysts of the Grubbs-Hoveyda type. The new 2-aryloxy-substituted ruthenium catalysts described herein reveal rapid initiation behavior. Further, the corresponding styrene-based precursor compounds are disclosed. The catalysts are prepared in a cross-metathesis reaction starting from styrene-based precursors which can be prepared in a cost-effective manner. The new Grubbs-Hoveyda type catalysts are suitable to catalyze ring-closing metathesis (RCM), cross metathesis (CM) and ring-opening metathesis polymerization (ROMP). Low catalyst loadings are necessary to convert a wide range of substrates including more complex and critical substrates via metathesis reactions at low to moderate temperatures in high yields within short reaction times.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: February 14, 2023
    Assignee: Umicore AG & Co. KG
    Inventors: Herbert Plenio, Pavlo Kos, Roman Savka
  • Patent number: 11498055
    Abstract: The present invention relates to a catalyst comprising at least one oxide of vanadium, at least one oxide of tungsten, at least one oxide of cerium, at least one oxide of titanium and at least one oxide of antimony, and an exhaust system containing said oxides.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: November 15, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Elodie Quinet, Stephan Malmberg, Nicola Soeger
  • Patent number: 11492945
    Abstract: The present invention relates to a catalyst comprising at least one oxide of vanadium, at least one oxide of tungsten, at least one oxide of cerium, at least one oxide of titanium and at least one oxide of niobium, and an exhaust system containing said oxides.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 8, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Elodie Quinet, Stephan Malmberg, Nicola Soeger
  • Patent number: 11462735
    Abstract: A carbonate precursor compound for manufacturing a lithium metal (M)-oxide powder usable as an active positive electrode material in lithium-ion batteries, M comprising 20 to 90 mol % Ni, 10 to 70 mol % Mn and 10 to 40 mol % Co, the precursor further comprising a sodium and sulfur impurity, wherein the sodium to sulfur molar ratio (Na/S) is 0.4<Na/S<2. Thes lithium metal (M)-oxide powder has a particle size distribution with 10 ?m?D50?20 ?m, a specific surface with 0.9?BET?5, the BET being expressed in g/cm2, the powder further comprises a sodium and sulfur impurity, wherein the sum (2*Nawt)+Swt of the sodium (Nawt) and sulfur (Swt) content expressed in wt % is more than 0.4 wt % and less than 1.6 wt %, and wherein the sodium to sulfur molar ratio (Na/S) is 0.4<Na/S<2.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 4, 2022
    Assignees: Umicore, Umicore Korea Ltd.
    Inventors: Jens Paulsen, Heonpyo Hong, JinDoo Oh
  • Patent number: 11426709
    Abstract: The present invention pertains to a catalyst for use in the selective catalytic reduction (SCR) of nitrogen oxides comprising: • a monolithic substrate and • a coating A which comprises an oxidic metal carrier comprising an oxide of titanium and a catalytic metal oxide which comprises an oxide of vanadium wherein the mass ratio vanadium/titanium is 0.07 to 0.26.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: August 30, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Kim Hougaard Pedersen, Anders Hjordt Pedersen, Martin Dam
  • Patent number: 11421335
    Abstract: The present invention is directed toward an electrolyte which allows for electrolytically producing a black metal layer consisting of rhodium and ruthenium. The present invention also relates to a method for producing a corresponding article, and to the use of the electrolyte.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: August 23, 2022
    Assignee: Umicore Galvanotechnik GmbH
    Inventors: Philip Schramek, Martin Stegmaier
  • Patent number: 11407776
    Abstract: The invention relates to a method for producing aqueous preparations of complexes of platinum group metals (PGM) Pt, Pd, Rh and Ir having the general formula [MA/MB/MC(L)a (H2O)b (O2—)c(OH?)d](OH—)e(H+)f, wherein MA=PtII or PdII, MB=PtIV, MC=Rh or Ir, L is a neutral monodentate or bidentate donor ligand, and a is an integer between 1 and 4 (or 2) and/or between 1 and 6 (or 3), b is an integer between 0 and 3 (or 5), c is an integer between 0 and 3 (or 4), d is an integer between 0 and 3 (or 5), e is an integer between 0 and 2 (or 3 or 4) and f is an integer between 0 and 4 (or 5). In the method according to the invention, the hydroxo complexes H2Pd(OH)4 (in the case of MA=PdII), H2Pt(OH)6 (in the case of MA=PtII and MB=PtIV) or H3MC(OH)6 (for MC=RhIII IrIII) are converted in the presence of the donor ligands, wherein at least one hydroxo group of the hydro complex is exchanged. Preferably, the reaction occurs at temperatures in the range of 40 to 110° C.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: August 9, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Eileen Woerner, Ralf Karch, Andreas Rivas-Nass, Angelino Doppiu
  • Patent number: 11407650
    Abstract: The invention relates to a method for producing a compound of formula MXn from a precursor compound of formula MXm, where M is a metal, X is a halide selected from F, Cl, Br, J, m is a number selected from the range 2 to 8, and n is a number selected from the range 1 to 7, with the condition that n<m, comprising a method step in which the precursor compound is reduced with a silane compound to the compound of formula MXn.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 9, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Joerg Sundermeyer, Lisa Hamel, Ruben Ramon Mueller, Andreas Rivas-Nass, Angelino Doppiu, Eileen Woerner, Ralf Karch
  • Patent number: 11384102
    Abstract: The invention relates to lithium alkyl aluminates according to the general formula Li[AlR4] and to a method for preparing same, starting from LiAlH4 and RLi in an aprotic solvent. The invention also relates to compounds according to the general formula Li[AlR4] which can be obtained using the claimed method, and to the use thereof. The invention also relates to the use of a lithium alkyl aluminate Li[AlR4] as a transfer reagent for transferring at least one radical R to an element halide or metal halide and to a method for transferring at least one radical R to a compound E(X)q for preparing a compound according to the general formula E(X)q-pRp, where E=aluminium, gallium, indium, thallium, germanium, tin, lead, antimony, bismuth, zinc, cadmium, mercury, or phosphorus, X=halogen, q=2, 3 or 4, and p=1, 2, 3 or 4. The invention also relates to compounds which can be obtained using such a method, to the use thereof, and to a substrate which has an aluminium layer or a layer containing aluminium on one surface.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: July 12, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Susanne Herritsch, Joerg Sundermeyer
  • Patent number: 11378278
    Abstract: Disclosed herein are methods and systems for the removal of volatile organic compounds, carbon monoxide and nitrogen oxides from off-gas, which systems comprise a source of ammonia, means for introducing ammonia into a catalytic article having an SCR functionality; a catalytic article having both an oxidation and an SCR functionality, the catalytic article comprising a catalyst substrate and a catalyst composition comprising at least one platinum group metal and/or at least one platinum group metal oxide, at least one oxide of titanium and at least one oxide of vanadium, wherein the washcoat is located in and/or on the walls of the catalyst substrate: means for measuring the amount of NOx and/or the ammonia slip between the outlet end of the catalytic article and the stack or at the stack, at least one carbon monoxide source, and means for introducing carbon monoxide into the catalytic article.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 5, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Kim Hougaard Pedersen, Wayne S. Jones, David Taylor
  • Patent number: 11352385
    Abstract: The invention relates to tetraalkylammonium-tetra- or hexahydroxometallates such as tetraethylammonium hexahydroxoplatinate, (N(alkyl)4)y[M(OH)x], a method for the production thereof, and the use thereof for producing catalysts.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: June 7, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Eileen Woerner, Timo Ebert, Michael Lennartz, Ralf Karch, Angelino Doppiu, Andreas Rivas-Nass, Annika Frey
  • Patent number: 11298692
    Abstract: The invention relates to a catalyst containing a BEA-type zeolite which contains iron as well as 0.05 to 1 percent by weight of sodium, the weight percentage being relative to the iron-exchanged zeolite and being calculated as metallic sodium.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: April 12, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Fei Wen, Nicola Soeger, Yvonne Demel