Patents Assigned to Umicore
  • Patent number: 11566548
    Abstract: The invention relates to a wall-flow filter as a particle filter with catalytically active coatings in the channels which are closed in a gas-tight manner at the opposing closed ends of the channels A at the first end, wherein the inlet region of the filter is additionally supplied with a dry powder-gas aerosol which contains metal compounds with a high melting point (such as the metal oxides Al2O3, SiO2, FeO2, TiO2, ZnO2, etc. for example) and which is to simultaneously improve the catalytic activity and the degree of filtration efficiency with respect to the exhaust gas back-pressure.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 31, 2023
    Assignee: UMICORE AG & CO. KG
    Inventors: Martin Foerster, Juergen Koch, Manuel Gensch, Naina Deibel, Antje Oltersdorf, Jan Schoenhaber
  • Patent number: 11547969
    Abstract: Subject of the invention is an exhaust gas purification system for a gasoline engine, comprising in consecutive order the following devices: a first three-way-catalyst (TWC1), a gasoline particulate filter (GPF) and a second three-way-catalyst (TWC2), wherein the oxygen storage capacity (OSC) of the TWC2 is greater than the OSC of the GPF, wherein the OSC is determined in mg/l of the volume of the device. The invention also relates to methods in which the system is used and uses of the system.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 10, 2023
    Assignee: UMICORE AG & CO. KG
    Inventors: Jan Schoenhaber, Joerg-Michael Richter, Carolin Braun
  • Publication number: 20220401920
    Abstract: The present invention relates to a catalyst comprising a carrier substrate of length L and at least two washcoat layers A and B wherein washcoat layer A comprises alumina; ceria; an alkaline earth compound and/or an alkali compound; platinum, palladium or platinum and palladium; washcoat layer B comprises a zeolite and palladium, wherein the palladium is present as palladium cation in the zeolite structure or is wholly or partially present as palladium metal and/or as palladium oxide in the zeolite structure and/or on the surface of the zeolite structure; and wherein washcoat layer A is arranged below washcoat layer B.
    Type: Application
    Filed: November 18, 2020
    Publication date: December 22, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Badr BASSOU, Anke WOERZ
  • Patent number: 11518756
    Abstract: The present invention relates to a selective method for carrying out the Buchwald-Hartwig coupling of biphenyl derivatives.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 6, 2022
    Assignee: UMICORE AG & CO. KG
    Inventors: Lukas J. Goossen, Matthias Gruenberg
  • Patent number: 11522187
    Abstract: The invention provides a positive electrode active material for a lithium ion battery, comprising a lithium transition metal-based oxide powder, the powder comprising single crystal monolithic particles comprising Ni and Co and having a general formula Li1+a ((Niz (Ni1/2 Mn1/2)y Cox)1?kAk)1-a 02, wherein A is a dopant, ?0.02<a?0.06, 0.10?x?0.35, 0?z?0.90, x+y+z=1 and k?0.01, the particles having a cobalt concentration gradient wherein the particle surface has a higher Co content than the particle center.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: December 6, 2022
    Assignees: UMICORE, UMICORE KOREA LTD.
    Inventors: Yagmur Celasun, Jens Paulsen, Shinichi Kumakura, Areum Park, Jukyoung Lee, Taehyeon Yang
  • Patent number: 11522186
    Abstract: A positive electrode active material for a lithium ion battery comprises a lithium transition metal-based oxide powder, the powder comprising single crystal monolithic particles comprising Ni and Co and having a general formula Li1+a (Niz Mny Cox Zrq Ak)1?a O2, wherein A is a dopant, ?0.025?a<0.005, 0.60?z?0.95, y?0.20, 0.05?x?0.20, k?0.20, 0?q?0.10, and x+y+z+k+q=1. The particles have a cobalt concentration gradient wherein the particle surface has a higher Co content than the particle center.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 6, 2022
    Assignees: UMICORE, UMICORE KOREA, LTD.
    Inventors: Jens Paulsen, HyeJeong Yang, JiHye Kim
  • Patent number: 11502290
    Abstract: A composite powder for use in the negative electrode of a battery, whereby the composite powder comprises composite particles, whereby the composite particles comprise a matrix material and silicon, whereby the composite particles have a particle size distribution having a d10 and a d90, whereby over at least part of the size range from d10 to d90 the composite particles have a size-dependent silicon content. Preferably a finer fraction of the composite powder has an average particle size D1 and a silicon content S1 and a coarser fraction of the composite powder has an average particle size D2 and a silicon content S2, whereby a size dependence factor F is defined as follows F=(S2?S1)/(D2?D1), whereby the absolute value of the size dependence factor F is at least 0.04 wt % silicon/?m.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 15, 2022
    Assignee: UMICORE
    Inventors: Nicolas Marx, Stijn Put, Jean-Sébastien Bridel
  • Patent number: 11502285
    Abstract: A rechargeable electrochemical cell comprising a negative electrode and a positive electrode is described. The positive electrode comprises a product having as overall formula Lip(NixMnyCozMmAlnAa)O2±b, wherein M signifies one or more elements from the group Mg, Ti, Cr, V and Fe, wherein A signifies one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn, and wherein 0.9<(x+y+z+m+n+a)<1.1, b<0.02, 0.9<p<1.110, 0.30<x<0.95, (y+z)?0.09, 0?m?0.05, 0?a?0.05, and 0?n?0.15. The negative electrode comprises composite particles, wherein the composite particles comprise silicon-based domains in a matrix material. The individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix material.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 15, 2022
    Assignees: UMICORE, UMICORE KOREA LTD.
    Inventors: Jean-Sébastien Bridel, Stijn Put, Dongjoon Ihm, Daniel Nelis
  • Patent number: 11498055
    Abstract: The present invention relates to a catalyst comprising at least one oxide of vanadium, at least one oxide of tungsten, at least one oxide of cerium, at least one oxide of titanium and at least one oxide of antimony, and an exhaust system containing said oxides.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: November 15, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Elodie Quinet, Stephan Malmberg, Nicola Soeger
  • Patent number: 11492945
    Abstract: The present invention relates to a catalyst comprising at least one oxide of vanadium, at least one oxide of tungsten, at least one oxide of cerium, at least one oxide of titanium and at least one oxide of niobium, and an exhaust system containing said oxides.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 8, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Elodie Quinet, Stephan Malmberg, Nicola Soeger
  • Publication number: 20220349096
    Abstract: The invention relates to a method for producing large stainless steel meshes on flatbed knitting machines, comprising the steps of providing stainless steel wire and knitting a stainless steel mesh, characterized in that one stainless steel mesh each is knitted on the front and the rear needle bed of the flatbed knitting machine at the same time, and these two stainless steel meshes are linked to each other on one side by connecting stitches.
    Type: Application
    Filed: September 16, 2020
    Publication date: November 3, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Dirk BORN, Dietmar KOENIGS
  • Publication number: 20220339581
    Abstract: The present invention relates to a catalyst comprising a carrier substrate of the length L, which extends between a first end face ‘a’ and a second end face ‘b’, and differently composed material zones A and B arranged on the carrier substrate, wherein material zone A comprises platinum and no palladium or platinum and palladium with a weight ratio of Pt:Pd of ?1 and, material zone B comprises a copper containing zeolite having a Cu/Al ratio of 0.355 or higher.
    Type: Application
    Filed: September 9, 2019
    Publication date: October 27, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Massimo COLOMBO, Michael SEYLER
  • Publication number: 20220341356
    Abstract: In an exhaust gas purification catalyst, a catalytic component (100) containing a first oxide (21), a second oxide (22), and a precious metal (30) is supported on a three-dimensional structure (10); the ratio of the amount of precious metal (30) supported on the first oxide (21) to the total amount of precious metal (30) supported on the first oxide (21) and precious metal (30) supported on the second oxide (22), or the ratio of the amount of precious metal (30) supported on the second oxide (22) to the total amount of precious metal (30) supported on the first oxide (21) and precious metal (30) supported on the second oxide (22) is 70% or more to 100% or less, as measured by an electron probe microanalyzer (EPMA); and the amount of carbon monoxide that the precious metal (30) can adsorb per unit mass is 15 mL/g or more to 100 mL/g or less.
    Type: Application
    Filed: October 6, 2020
    Publication date: October 27, 2022
    Applicant: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Yasuyuki TAKEDA, Shigekazu MINAMI
  • Patent number: 11476461
    Abstract: A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula M(O)x(OH)2-x-y(CO3)y, with 0<x?1, 0<y<0.03 and M=NiaMnbCocAd. A being a dopant, with 0.30?a<0.90, 0.10?b<0.40, 0.10?c<0.40, d<0.05 and a+b+c+d=1, the precursor having a Na content less than 200 ppm, a S content less than 250 ppm, the precursor having a specific surface area with a BET value expressed in m2/g and a tap density TD expressed in g/cm3, with a ratio BET/TD>30.104 cm5/g2.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: October 18, 2022
    Assignees: UMICORE, UMICORE KOREA, LTD.
    Inventors: Jens Paulsen, Daniël Nelis, Jin Hu, Liang Zhu, Eric Robert
  • Publication number: 20220323947
    Abstract: The present invention relates to a method for producing a non-rectangular noble metal net (5) on flat bed knitting machines, comprising the steps of providing noble metal wire or noble metal alloy wire providing combustible yarn knitting a net (5) using noble metal wire or noble metal alloy wire for the reaction zone (7), wherein combustible yam is used for the offcut area (9), which is singed off or otherwise removed after the knitting process.
    Type: Application
    Filed: August 14, 2020
    Publication date: October 13, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Dirk BORN, Dietmar KOENIGS
  • Publication number: 20220325645
    Abstract: The invention relates to a method for producing a wall-flow filter for removing fine particulate solids from gases, and to the use thereof for cleaning exhaust gases of an internal combustion engine. The invention also relates to a correspondingly produced exhaust-gas filter having a high filtration efficiency.
    Type: Application
    Filed: November 7, 2019
    Publication date: October 13, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Manuel GENSCH, Martin FOERSTER, Naina DEIBEL, Antje OLTERSDORF, Juergen KOCH
  • Patent number: 11462735
    Abstract: A carbonate precursor compound for manufacturing a lithium metal (M)-oxide powder usable as an active positive electrode material in lithium-ion batteries, M comprising 20 to 90 mol % Ni, 10 to 70 mol % Mn and 10 to 40 mol % Co, the precursor further comprising a sodium and sulfur impurity, wherein the sodium to sulfur molar ratio (Na/S) is 0.4<Na/S<2. Thes lithium metal (M)-oxide powder has a particle size distribution with 10 ?m?D50?20 ?m, a specific surface with 0.9?BET?5, the BET being expressed in g/cm2, the powder further comprises a sodium and sulfur impurity, wherein the sum (2*Nawt)+Swt of the sodium (Nawt) and sulfur (Swt) content expressed in wt % is more than 0.4 wt % and less than 1.6 wt %, and wherein the sodium to sulfur molar ratio (Na/S) is 0.4<Na/S<2.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 4, 2022
    Assignees: Umicore, Umicore Korea Ltd.
    Inventors: Jens Paulsen, Heonpyo Hong, JinDoo Oh
  • Publication number: 20220297093
    Abstract: The present invention relates to a composition comprising platinum supported on titanium oxide, the platinum particles having an average particle diameter of 50-200 nm. The composition has a surprisingly low light-off temperature for the ammonia oxidation and a high selectivity for oxidation to N2.
    Type: Application
    Filed: August 18, 2020
    Publication date: September 22, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Birgit FRIEDRICH, Gordon KEITL
  • Patent number: 11446639
    Abstract: An exhaust gas cleaning catalyst is provided with a fire-resistant three-dimensional structural body, a first catalyst layer provide on a first surface side of the fire-resistant three-dimensional structural body, and a second catalyst layer provided on a side of the first catalyst layer opposite to the fire-resistant three-dimensional structural body. The first catalyst layer contains: a complex oxide including cerium and zirconium; and elemental rhodium. The second catalyst layer contains: a complex oxide including cerium and zirconium; and elemental palladium. The amount of cerium included in the second catalyst layer, in terms of cerium dioxide, is 10-25 g per liter of the fire-resistant three-dimensional structural body.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: September 20, 2022
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Yuji Ogino, Yusuke Haneda
  • Patent number: 11447399
    Abstract: [Task] To provide a preparation method of a nickel-lithium metal composite oxide powder [Means for Resolution] In a preparation method of a nickel-lithium metal composite oxide powder having a small particle diameter, aggregation of particles and excessive crushing of particles do not occur, by performing the firing at a temperature equal to or lower than a melting point of lithium carbonate by using lithium carbonate as a lithium source, and therefore, a preparation method of a nickel-lithium metal composite oxide powder having a small particle diameter, in which fine powder or cracks of particles are not generated, is provided.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: September 20, 2022
    Assignee: UMICORE
    Inventors: Hiroaki Ishizuka, Tomomi Fukuura, Miwako Nishimura, Hironori Ishiguro