Patents Assigned to Universitat Stuttgart
  • Publication number: 20180242003
    Abstract: The invention relates to a method for compressing an input data set, which comprises one or more input values, comprising the following steps: determining, for each input value, a tolerance range; generating encoded lossy values by a lossy encoding of the input values; generating output values associated with the input values, in particular by decoding the encoded lossy values; generating difference values by subtracting each decoded lossy value from the respectively associated input value; comparing each difference value with the respectively associated determined tolerance range; generating encoded correction values associated with the encoded lossy values on the basis of the difference values, wherein the encoded correction values are offset values, which can be added to the associated encoded lossy values; and providing an output data record as a function of a comparison of the difference values with the tolerance ranges and on the basis of the encoded lossy values and/or the encoded correction values.
    Type: Application
    Filed: August 5, 2016
    Publication date: August 23, 2018
    Applicant: Universitat Stuttgart
    Inventors: Sven Simon, Thomas Richter, Zhe M. Sc Wang, Yousef M. Sc Baroud, Mahdi M. Sc Najmabadi
  • Publication number: 20180202872
    Abstract: The present invention relates to a method and an apparatus for establishing residual stresses in objects, in particular in coated objects, and to a method and an apparatus for coating objects. The method comprises: impinging a surface (8) of the object (5) with laser light and generating a hole or a pattern of holes and/or locally heated points in the object (5); establishing the surface deformations by an optical deforming measuring method after the object (5) is impinged by laser light; establishing the residual stresses present in the object (5) from the measured surface deformations, wherein the generation of the hole pattern is carried out by an optical scanning apparatus which comprises an optical deflection and/or modulation arrangement for controllable deflection and/or modulation of the laser light, and/or a focusing arrangement for controllable focusing of the laser light.
    Type: Application
    Filed: May 20, 2016
    Publication date: July 19, 2018
    Applicant: Universität Stuttgart
    Inventors: Wolfgang Osten, Giancarlo Pedrini, Rainer Gadow, Klaus Körner
  • Patent number: 9822179
    Abstract: The present invention relates in general to the field of TNF ligand family members. In more detail the present invention relates to polypeptides comprising at least three components A, each of which comprises the sequence of a TNF homology domain (THD) of a TNF ligand family member, or a functional derivative thereof, and comprising at least one component B consisting of a VL region and a VH region linked directly to each other with a linker sequence L which has a length of <12 amino acids. Furthermore, the present invention also relates to nucleic acids encoding such polypeptides and pharmaceutical compositions thereof.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 21, 2017
    Assignee: UNIVERSITAT STUTTGART
    Inventors: Klaus Pfizenmaier, Roland Kontermann, Martin Siegemund
  • Publication number: 20170327594
    Abstract: The present invention provides a polypeptides comprising a heavy chain domain 2 (HD2) from IgM or IgE and at least one pharmaceutically active moiety, complexes thereof and their use for therapy and prophylaxis.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 16, 2017
    Applicant: UNIVERSITÄT STUTTGART
    Inventors: Roland KONTERMANN, Oliver SEIFERT, Aline PLAPPERT
  • Patent number: 9804336
    Abstract: The present invention relates to a method for connecting a solid core optical fiber (2) with another optical fiber (20), wherein the solid core optical fiber (2) comprises a joining device (10), which is created on one axial end of the solid core optical fiber (2) using a 3D printer and wherein the other optical fiber (20) is incorporated in the joining device (10) via an axial end of the other optical fiber (20), which is thus connected with the solid core optical fiber (2). In addition, the invention relates to a solid core optical fiber (2) with a joining device (10) created by a 3D-printer, and the relevant use of a 3D printer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: October 31, 2017
    Assignee: UNIVERSITAT STUTTGART
    Inventors: Harald Giessen, Stefan Kedenburg, Timo Gissibl, Andy Steinmann
  • Patent number: 9772275
    Abstract: Disclosed herein is a measuring probe and an arrangement for measuring spectral absorption, preferably in the infrared. Furthermore, the invention relates to a method for spectroscopically measuring absorption. The measuring probe may comprise a cutting apparatus configured to cut a slice or respectively flap off of a sample to be measured; a measuring gap configured to accommodate the sample slice; an optical window element for coupling measuring light into, or respectively out of the measuring gap; and an end reflector designed and arranged to reflect the measuring light propagated through the measuring gap back into the measuring gap. The arrangement for measuring spectral absorption may comprise the measuring probe, a light source and an apparatus for the spectral analysis of the measuring light coupled out of the measuring gap.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 26, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Christof Pruss, Alois Herkommer, Wolfgang Osten, Daniel Claus
  • Patent number: 9739594
    Abstract: Disclosed are methods and an assembly for robust one-shot interferometry, in particular for optical coherence tomography according to the spatial domain approach (SD-OCT) and/or according to the light-field approach. In one embodiment, the method and the assembly may be used for measurements on material and living tissue, for distance measurement, for 2D or 3D measurement with a finely structured light source imaged onto the object in a diffraction-limited way, or with spots thereof. The assembly may comprise an interferometer having object and reference arms and a detector for electromagnetic radiation. In other embodiments, during a detection process, a plurality of spatial interferograms may be formed by making an inclined and/or curved reference wavefront interfere with an object wavefront for each measurement point. The resulting spatial interferograms may be detected in a single detector frame and may be further evaluated via a computer program.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: August 22, 2017
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Wolfgang Osten
  • Publication number: 20170050994
    Abstract: The invention relates to an N-heterocyclic carbene complex of general formulas I to IV (I) (II) (III) (IV), according to which A1 stands for NR2 or PR2, A2 stands for CR2 R2?, NR2, PR2, 0 or S, A3 stands for N or P, and C stands for a carbene carbon atom, ring B is an unsubstituted or a mono or poly-substituted 5 to 7-membered ring, substituents R2 and R2? stand, inter alia, for a linear or branched C1-Cw-alkyl group and, if N and N each stand for NR2 or PR2, are the same or different, M in formulas I, II, III or IV stands for Cr, Mo or W, X 1 or X2 in formulas I to IV are the same or different and represent, inter alia, C1-C1s carboxylates and C1-C1s-alkoxides, Y is inter alia oxygen or sulphur, Z is inter alia a linear or branched C1-Cw-alkylenoxy group, and R 1 and R1? in formulas I to IV are, inter alia, an aliphatic or aromatic group.
    Type: Application
    Filed: April 24, 2015
    Publication date: February 23, 2017
    Applicant: UNIVERSITÄT STUTTGART
    Inventors: Michael R. Buchmeiser, Suman Sen, Roman Schowner
  • Publication number: 20160322632
    Abstract: A method for producing a porous nanocrystalline semiconductor layer (100) is provided, including: a) providing a substrate (10) having a substrate surface; b) coating a semiconductor layer (12) on the substrate surface; c) coating a metal containing layer (14) on the semiconductor layer; d) heat treating the semiconductor layer and the metal containing layer at a temperature and for a time period such that the semiconductor and the metal partially interdiffuse and the semiconductor is at least partially crystallized; and e) least partially removing the metal. Further, a porous nanocrystalline semiconductor layer, a use thereof, an anode, and a secondary lithium-ion battery are provided.
    Type: Application
    Filed: December 23, 2013
    Publication date: November 3, 2016
    Applicant: Universitat Stuttgart
    Inventors: Horst Strunk, Fei Qu
  • Patent number: 9383306
    Abstract: Disclosed herein is an apparatus for spectroscopic ellipsometry, preferably for infrared spectroscopic ellipsometry, and a method for spectroscopic ellipsometry employing the apparatus. In some embodiments, the apparatus may comprise a light source (12), a detector (30), a polarizer (40), an analyzer (41), and a measuring probe (10). In one embodiment, the measuring probe may comprise an ATR prism (50) having at least one first surface having at least one measuring portion (M) configured to be brought in optical contact with a measured object (72), and at least one second surface having at least one reflective portion (RX).
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 5, 2016
    Assignee: Universität Stuttgart
    Inventors: Klaus Koerner, Arnulf Roeseler, Daniel Claus, Wolfgang Osten
  • Patent number: 9334172
    Abstract: In a method for recovering volatile components from a solid material, a liquid phase is mechanically removed from the solid material. Subsequently, the solid material is dried by exposing the solid material to superheated steam circulating in a closed circuit. From the closed circuit excess steam that contains volatile components given off by the solid material is removed. The volatile components are separated from the excess steam by condensing the excess steam to a condensed phase and the volatile components are from the condensed phase by adding suitable ions to the condensed phase to crystallize the volatile components.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: May 10, 2016
    Assignees: Fraunhofer-Gesellschaft zur Föderung der angewandten Forschung e. V., Universität Stuttgart
    Inventors: Alejandra Campos, Siegfried Egner, Alexander Lohner, Sukhanes Laopeamthong, Maria Soledad Stoll
  • Publication number: 20160069026
    Abstract: In a method for impregnating semi-finished fibrous products using resin as the impregnating means, winding or laying the semi-finished fibrous products in a plurality of layers on top of one another onto a receiving carrier is initially performed. Here, lower layers lie close to the receiving carrier, and upper layers lie more remote therefrom. The receiving carrier is configured so as to be permeable to the impregnating means. The impregnating means is then introduced through the receiving carrier into the semi-finished fibrous products, wherein the impregnating means initially permeates the lower layers and then permeates the upper layers of the semi-finished fibrous products.
    Type: Application
    Filed: March 21, 2014
    Publication date: March 10, 2016
    Applicant: Universität Stuttgart
    Inventors: Gerd FALK, Markus BLANDL
  • Publication number: 20150274827
    Abstract: The present invention relates in general to the field of TNF ligand family members. In more detail the present invention relates to polypeptides comprising at least three components A, each of which comprises the sequence of a TNF homology domain (THD) of a TNF ligand family member, or a functional derivative thereof, and comprising at least one component B consisting of a VL region and a VH region linked directly to each other with a linker sequence L which has a length of <12 amino acids. Furthermore, the present invention also relates to nucleic acids encoding such polypeptides and pharmaceutical compositions thereof.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 1, 2015
    Applicant: UNIVERSITÄT STUTTGART
    Inventors: Klaus Pfizenmaier, Roland Kontermann, Martin Siegemund
  • Patent number: 8932554
    Abstract: Method to produce diamonds containing Nitrogen-Vacancy centers from diamonds grown by a high pressure and high temperature process and containing isolated substitutional nitrogen, comprising: —Irradiating (12) said diamonds by an electron beam such that the irradiation dose is comprised between 1017 and 1019 electrons per square centimeter; —annealing (14) the irradiated diamonds in vacuum or in a inert atmosphere at a temperature above 700° C. and for at least 1 hour; characterized in that said electron beam has an acceleration energy above 7 MeV.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 13, 2015
    Assignees: INSERM (Institut National de la Sante et de la Recherche Medicale), Universitat Stuttgart, Armines
    Inventors: Jean-Paul Boudou, Patrick Curmi
  • Patent number: 8927205
    Abstract: The invention relates to polypeptides comprising, as constituent A, at least three monomers of a member of the TNF ligand family and, as constituent B, at least two peptide linkers that link the monomers of the member of the TNF ligand family to one another. The invention also relates to the use of these polypeptides for treating diseases and for producing a medicament or a vaccine. The invention also relates to methods for producing and isolating these polypeptides, to nucleic acids that code for these polypeptides, to vectors containing these nucleic acids, to host cells transfected with these vectors, and to pharmaceutical compositions containing these inventive objects. Finally, the invention relates to methods for the extracorporeal manipulation, depletion and/or removal of components contained in body fluids, e.g. by means of apheresis.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: January 6, 2015
    Assignee: Universitat of Stuttgart
    Inventors: Klaus Pfizenmaier, Peter Scheurich, Ingo Grunwald, Anja Krippner-Heidenreich
  • Publication number: 20140249343
    Abstract: Disclosed is a process for the direct alkylation of aromatic compounds with alkanes. To this end a judicious catalyst combination is provided. The composition comprises palladium as a catalytically active metal, and zinc as a promoter, or a metal such as tin having a comparable promoting action. The metals are contained in a zeolite support, or a similar support of a metal organic framework type or a silico alumino phosphate type.
    Type: Application
    Filed: June 28, 2012
    Publication date: September 4, 2014
    Applicant: UNIVERSITÄT STUTTGART
    Inventors: Yvonne Traa, Daniel Geiss
  • Publication number: 20130270991
    Abstract: A method of manufacturing an optical element, the method comprising: growing a first layer of single crystal diamond material via a chemical vapour deposition technique using a gas phase having a first nitrogen concentration; growing a second layer of single crystal diamond material over said first layer via a chemical vapour deposition technique using a gas phase having a second nitrogen concentration, wherein the second nitrogen concentration is lower than the first nitrogen concentration; forming an optical element from at least a portion of the second layer of single crystal diamond material; and forming an out-coupling structure at a surface of the optical element for increasing out-coupling of light.
    Type: Application
    Filed: August 2, 2011
    Publication date: October 17, 2013
    Applicants: Element Six Limited, UNIVERSITAT STUTTGART
    Inventors: Daniel James Twitchen, Joseph Michael Dodson, Matthew Lee Markham, Fedor Jelezko
  • Patent number: 8519732
    Abstract: The invention relates to a method for monitoring the breakdown of a pn junction in a semiconductor component and to a semiconductor component adapted to carrying out said method. According to the method, optical radiation which is emitted if a breakdown occurs on a pn junction is detected by a photosensitive electronic component (8) integrated into the semiconductor component. The supply of the pn junction is controlled according to the detected radiation to prevent a complete breakdown during operation of the semiconductor component. The method according to the invention and the semiconductor component adapted thereto permit the operating range of the semiconductor component to be extended and the power output to be increased without the risk of destruction.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 27, 2013
    Assignee: Universitat Stuttgart
    Inventors: Erich Kasper, Michael Morschbach
  • Patent number: 8377257
    Abstract: A total evaporator for fluids, including a cold chamber to prevent pre-evaporation, an evaporation region connected thereto having narrow flow cross-section for fast evaporation of the fluid, and a subsequent vapor chamber for pulsation damping and the controlled superheating of the vapor, the evaporation region being formed by a gap between concentrically nested cylindrical and/or conical tube sections and heat required for the evaporation and superheating processes is supplied by electric heating and/or by hot fluid and/or by catalytic or homogeneous combustion via the wall of the concentric tubes.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: February 19, 2013
    Assignee: Universitat Stuttgart
    Inventors: Gerhart Eigenberger, Andreas Freund, Grigorios Kolios, Clemens Merten, Jens Bernnat, Gudrun Friedrich
  • Patent number: 8279434
    Abstract: The invention lies in the technical field of cell biology and transplantation medicine. It concerns devices and methods for rapid and noninvasive analysis or checking of biological samples, especially for sterility control, for characterization of infectious particles and microorganisms contained in the biological sample and for characterization of tissue cells and transplants. The main areas of application of the invention are biotechnological production of pharmacological active ingredients and therapeutic agents as well as transplantation medicine.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: October 2, 2012
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angwandten Forschung, e.V., Universität Stuttgart
    Inventors: Heike Mertsching, Gerd Sulz, Hagen Thielecke, Carsten Bolwien, Steffen Koch