Patents Assigned to University of Maryland, College Park
  • Patent number: 11710062
    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: July 25, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, IONQ, INC.
    Inventors: Caroline Figgatt, Aaron Ostrander, Norbert M. Linke, Kevin A. Landsman, Daiwei Zhu, Dmitri Maslov, Christopher Monroe
  • Patent number: 11710061
    Abstract: The disclosure describes various aspects of optical control of atomic quantum bits (qubits) for phase control operations. More specifically, the disclosure describes methods for coherently controlling quantum phases on atomic qubits mediated by optical control fields, applying to quantum logic gates, and generalized interactions between qubits. Various attributes and settings of optical/qubit interactions (e.g., atomic energy structure, laser beam geometry, polarization, spectrum, phase, background magnetic field) are identified for imprinting and storing phase in qubits. The disclosure further describes how these control attributes are best matched in order to control and stabilize qubit interactions and allow extended phase-stable quantum gate sequences.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: July 25, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Christopher Monroe, Marko Cetina, Norbert Linke, Shantanu Debnath
  • Patent number: 11705577
    Abstract: Electrodes containing lithium phosphate derivative materials and batteries with such electrodes are provided. The lithium phosphate derivative compounds contain an anionic framework capable of conducting lithium ions and have an activation energy from 0.2 to 0.45 eV and conductivities from 0.01 to 10 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: July 18, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Patent number: 11701232
    Abstract: An implantable acellular polymeric scaffold device functionalized with aggrecan is provided. Also provided are methods of fabricating a polymeric scaffold device, including methods of fabricating the scaffold device via 3D printing. Methods of treating a cartilage defect in a subject in need thereof comprise application of the disclosed scaffold device in combination with microfracture procedures. A specialized lid for a centrifugation well plate is also provided.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: July 18, 2023
    Assignee: University of Maryland, College Park
    Inventors: Ting Guo, John Patrick Fisher, Hannah Baker, Max Jonah Lerman, Robert Choe
  • Patent number: 11698347
    Abstract: Disclosed herein are systems and methods for synthesizing a diamond using a diamond synthesis machine. A processor receives a plurality of images of a diamond during synthesis within a diamond synthesis machine, each of the plurality of images captured within a time period. The processor executes a diamond state prediction machine learning model using the plurality of images to obtain a predicted data object, the predicted data object indicating a predicted state of the diamond within the diamond synthesis machine at a time subsequent to the time period. The processor detects a predicted defect, a number of defects, defect types, and/or sub-features of such defects and/or other characteristics (e.g., a predicted shape, size, and/or other properties of predicted contours for the diamond and/or pocket holder) of the predicted state of the diamond. The processor adjusts operation of the diamond synthesis machine.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 11, 2023
    Assignees: FRAUNHOFER USA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Rohan Reddy Mekala, Matthias Muehle, Adam Porter, Mikael Lindvall, Michael Becker
  • Patent number: 11687623
    Abstract: Systems, methods, apparatuses, and computer program products for providing an anti-piracy framework for Deep Neural Networks (DNN). A method may include receiving authorized raw input at a protective transform module. The method may also include receiving unauthorized raw input at a restrictive deep neural network. The method may further include processing the authorized raw input at the protective transform module to generate a processed input. In addition, the method may include feeding the processed input into the restrictive deep neural network. The method may also include generating a result based on the processed input and the unauthorized raw input. Further, the result may include a different learning performance between the authorized raw input and the unauthorized raw input.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: June 27, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Min Wu, Mingliang Chen
  • Patent number: 11681322
    Abstract: The disclosure describes an adaptive and optimal imaging of individual quantum emitters within a lattice or optical field of view for quantum computing. Advanced image processing techniques are described to identify individual optically active quantum bits (qubits) with an imager. Images of individual and optically-resolved quantum emitters fluorescing as a lattice are decomposed and recognized based on fluorescence. Expected spatial distributions of the quantum emitters guides the processing, which uses adaptive fitting of peak distribution functions to determine the number of quantum emitters in real time. These techniques can be used for the loading process, where atoms or ions enter the trap one-by-one, for the identification of solid-state emitters, and for internal state-detection of the quantum emitters, where each emitter can be fluorescent or dark depending on its internal state.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: June 20, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Christopher Monroe, Jiehang Zhang, David Wong-Campos, Antonios Kyprianidis, Patrick Michael Becker
  • Patent number: 11676053
    Abstract: In some embodiments, systems, methods, and media for automatically identifying entrepreneurial individuals in a population using individual and population level data are provided. In some embodiments, a system is provided, comprising: a database storing: grades and identifying information for classes; a hardware processor configured to: calculate, for each class, a difficulty value based on the grade for each individual; modify grades associated with the individual based on the difficulties; determine a variance using the modified grades; determine an average variance; determine that the variance for a first individual is larger average; determine that the first individual is more likely than average to be entrepreneurial; in response to determining that the first individual is more likely than average to be entrepreneurial, add identifying information of the first student to a second database of potential entrepreneurs.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: June 13, 2023
    Assignees: Wisconsin Alumni Research Foundation, University of Maryland, College Park
    Inventors: Jonathan T. Eckhardt, Bekhzod Khoshimov, Brent Goldfarb
  • Patent number: 11670799
    Abstract: Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: June 6, 2023
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chen Ling, Ying Zhang, Yifei Mo, Qiang Bai
  • Patent number: 11670881
    Abstract: In some embodiments, systems and methods for connector assembly for use with an AC or DC power interface of a power conversion device, such as a converter and an inverter, are provided. The connector assembly can include a circuit board, a power connector, and a pin. The power connector can have a base configured to be secured relative to the circuit board and define a first channel extending through the power connector along a first channel axis. The first pin can have a first pin body that extends along a first pin axis and a first connection element that extends along the first pin axis from the first pin body to a first terminal end that is skewed relative to the first pin axis.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: June 6, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Alireza Khaligh, Fariborz Musavi
  • Patent number: 11665324
    Abstract: A method for displaying a modified phase mask on a spatial light modulator (SLM), including: modifying, by a processor, a phase mask by combining the phase mask with a virtual lens pattern, the virtual lens pattern having a focal length; displaying, by the SLM in communication with the processor, the modified phase mask on the SLM; and projecting, by a light source in communication with the processor, the light source through the SLM to form an intensity pattern at a distance from the SLM corresponding to the focal length of the virtual lens pattern, the intensity pattern being based on the phase mask.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: May 30, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Samira Aghayee, Mitchell Weikert, Wolfgang Losert, Patrick Kanold
  • Patent number: 11656215
    Abstract: The present invention relates an indicator system for assessing a reduction state of unconsolidated material that includes a delivery tube defining an interior chamber, and a substrate disposed within the interior chamber and including a reactive coating thereon. The reactive coating is at least partially removable from the substrate upon exposure to a reducing condition of unconsolidated material over a period of time. An indicator device including a reactive coating comprising a manganese oxide is also disclosed.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 23, 2023
    Assignee: University of Maryland, College Park
    Inventor: Martin C. Rabenhorst
  • Publication number: 20230136520
    Abstract: Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Applicants: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chen LING, Ying ZHANG, Yifei MO, Qiang BAI
  • Patent number: 11641029
    Abstract: Solid-state lithium ion electrolytes of metal lithium chloride derivative compounds having a crystal morphology in the P21/c space group are provided as materials for conducting lithium ions. An activation energy of the lithium aluminum chloride derivative compounds is from 0.15 to 0.40 eV and conductivities are from 0.01 to 3 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes and electrodes containing the lithium aluminum chloride derivative compounds are also provided.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: May 2, 2023
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Yifei Mo, Yunsheng Liu, Chen Ling
  • Publication number: 20230129063
    Abstract: Solid-state lithium ion electrolytes of lithium metal nitride based compounds are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium metal nitride based composites are also provided.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Alexander EPSTEIN, Chen LING, Ying ZHANG
  • Patent number: 11636328
    Abstract: Various face discrimination systems may benefit from techniques for providing increased accuracy. For example, certain discriminative face verification systems can benefit from L2-constrained softmax loss. A method can include applying an image of a face as an input to a deep convolutional neural network. The method can also include applying an output of a fully connected layer of the deep convolutional neural network to an L2-normalizing layer. The method can further include determining softmax loss based on an output of the L2-normalizing layer.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: April 25, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Rajeev Ranjan, Carlos Castillo, Ramalingam Chellappa
  • Patent number: 11631892
    Abstract: The present invention is directed to aqueous solid polymer electrolytes that comprise a lithium salt and battery cells comprising the same. The present invention is also directed to methods of making the electrolytes and methods of using the electrolytes in batteries and other electrochemical technologies.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: April 18, 2023
    Assignees: University of Maryland, College Park, The United States of America as Represented by the Secretary of the Army
    Inventors: Matthew D. Widstrom, Peter Kofinas, Arthur V. Cresce, Kang Xu
  • Publication number: 20230088369
    Abstract: The present invention relates to rhomboidal phase bismuth oxide that maintains electric conductivity of at least about 1×10?2 S/cm at temperature of about 500° C. for at least about 100 hours. In particular, the bismuth oxides of the invention have stable conductivity at a temperature range from about 500° C. to about 550° C.
    Type: Application
    Filed: November 19, 2022
    Publication date: March 23, 2023
    Applicant: University of Maryland, College Park
    Inventors: Eric D. Wachsman, Adam Jolley
  • Patent number: 11609210
    Abstract: A monitoring device for a battery pack, which includes a plurality of battery cells, has at least one ultrasound source and at least one ultrasound sensor. The ultrasound source can be configured to generate and direct ultrasound at one or more battery cells of the battery pack. The ultrasound sensor can be configured to detect ultrasound reflected from or transmitted through one or more cells of the battery pack. A battery management unit receives one or more signals from the ultrasound sensor responsive to the detected ultrasound. The battery management unit can be configured to determine a state of the battery pack based at least in part on the detected ultrasound.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 21, 2023
    Assignee: University of Maryland, College Park
    Inventors: Bhanu Sood, Michael G. Pecht, Michael D. Osterman
  • Patent number: PP35225
    Abstract: A new and distinctive variety of Malus domestica apple tree named ‘MD-TAP1’ is distinguished by its attractive tree architecture, reduced need for hand pruning and training, and fruit which is harvested six weeks earlier than its seed parent.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: June 20, 2023
    Assignee: University of Maryland, College Park
    Inventors: Christopher S. Walsh, Julia M. Harshman, Kathleen W. Hunt