Patents Assigned to University of Maryland, College Park
  • Patent number: 11808492
    Abstract: A cooling system employs at least one composite elastocaloric device. Each composite device has a first member with a first material and a second member with an elastocaloric material. The first material increases in size in response to an applied electric or magnetic field and returns to its prior size upon removal of the applied electric or magnetic field. The first and second members are mechanically coupled together such that the increase in size of the first material applies a stress to the elastocaloric material and the return of the first material to its prior size releases said stress, thereby causing the elastocaloric material to absorb heat.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: November 7, 2023
    Assignees: University of Maryland, College Park, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Huilong Hou, Ichiro Takeuchi, Margo Staruch, Peter Finkel
  • Patent number: 11806706
    Abstract: Disclosed herein are methane conversion devices that achieve autothermal conditions and related methods using the methane conversion devices.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 7, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Dongxia Liu, Su Cheun Oh
  • Publication number: 20230349835
    Abstract: Disclosed herein are systems and methods for synthesizing a diamond using a diamond synthesis machine. A processor receives a plurality of images of a diamond during synthesis within a diamond synthesis machine, each of the plurality of images captured within a time period. The processor executes a diamond state prediction machine learning model using the plurality of images to obtain a predicted data object, the predicted data object indicating a predicted state of the diamond within the diamond synthesis machine at a time subsequent to the time period. The processor detects a predicted defect, a number of defects, defect types, and/or sub-features of such defects and/or other characteristics (e.g., a predicted shape, size, and/or other properties of predicted contours for the diamond and/or pocket holder) of the predicted state of the diamond. The processor adjusts operation of the diamond synthesis machine.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Applicants: FRAUNHOFER USA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Rohan Reddy MEKALA, Matthias MUEHLE, Adam PORTER, Mikael LINDVALL, Michael BECKER
  • Publication number: 20230348947
    Abstract: The present invention provides for the use of recombinant Endo-S2 mutants (named Endo-S2 glycosynthases) that exhibit reduced hydrolysis activity and increased transglycosylation activity for the synthesis of glycoproteins wherein a desired sugar chain is added to a fucosylated or nonfucosylated GlcNAc-IgG acceptor. As such, the present invention allows for the synthesis and remodeling of therapeutic antibodies thereby providing for certain biological activities, such as, prolonged half-life time in vivo, less immunogenicity, enhanced in vivo activity, increased targeting ability, and/or ability to deliver a therapeutic agent.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Applicant: University of Maryland, College Park
    Inventors: Lai-Xi Wang, Qiang Yang, Tiezheng Li, Xin Tong
  • Publication number: 20230352995
    Abstract: An axial field rotary energy device can include a housing and a rotor rotatably coupled to the housing. The rotor can have an axis of rotation and magnets. A stator assembly can be coupled to the housing coaxial with and adjacent to the rotor. The stator assembly can include a printed circuit board (PCB) having electrically conductive coils and an internal air duct for cooling the stator assembly.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Applicants: INFINITUM ELECTRIC, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Raphael Kahat Mandel, Paulo Guedes-Pinto, Amir Shooshtari, Randal A. Lee
  • Patent number: 11803246
    Abstract: A gesture recognizing system for recognizing gestures includes a wearable band configured to wrap around an appendage of a user and a printed circuit board (PCB). The wearable band includes a first dielectric layer and a plurality of electrodes affixed on an outer surface of the first dielectric layer. When the first dielectric layer of the wearable band wraps around the appendage, each electrode is configured to form a capacitive sensor with skin of the user. The PCB includes a processor and a data collection hardware configured to collect data from capacitive sensors. The processor is configured to process the collected data and to recognize a gesture of the appendage of the user based on the processed data.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: October 31, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventor: Louis J. Dankovich
  • Publication number: 20230340016
    Abstract: The present disclosure provides a one-pot chemoenzymatic method for site-specific modification and conjugation of antibodies at their Fc glycan site to produce structurally well-defined antibody conjugates carrying defined drugs and other entities. The method is enabled by the discovery that certain endoglycosidases have the ability to both deglycosylate an antibody and to recognize selectively modified small disaccharide oxazolines for transglycosylation on antibodies without hydrolysis of the resulting products.
    Type: Application
    Filed: February 2, 2023
    Publication date: October 26, 2023
    Applicant: University of Maryland, College Park
    Inventors: Lai-Xi Wang, Xiao Zhang
  • Publication number: 20230332087
    Abstract: Examples of the present disclosure generally relate to systems, methods, and devices for performing electrochemical control and monitoring of bacterial gene expression to a precisely assigned level, and may be used, for example, for controlling the production of a protein of interest.
    Type: Application
    Filed: April 14, 2023
    Publication date: October 19, 2023
    Applicant: University of Maryland, College Park
    Inventors: John Robertson Rzasa, Sally Wang, Chen-Yu Chen, Chen-Yu Tsao, William E. Bentley
  • Patent number: 11786899
    Abstract: A microfluidic device including at least one channel in fluid communication with a sample trap array. Specifically, the configuration and geometry of the trap arrays according to the present invention allows for performing sample digitization that supports passive self-discretization within the sample traps without the need for any external flow control or actuation. Geometrical parameters defining the sample traps, including the trap width and the trap depth, are selected to optimize self-filling of the sample traps. Reagents are incorporated into the sample traps during device fabrication to allow for performing multiplexed reactions within the sample traps.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 17, 2023
    Assignee: University of Maryland, College Park
    Inventors: Don L. DeVoe, Alex Sposito
  • Patent number: 11780984
    Abstract: Bare porous polymer monoliths, fluidic chips, methods of incorporating bare porous polymer monoliths into fluidic chips, and methods for functionalizing bare porous polymer monoliths are described. Bare porous polymer monoliths may be fabricated ex situ in a mold. The bare porous polymer monoliths may also be functionalized ex situ. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include inserting the monoliths into channels of channel substrates of the fluidic chips. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include bonding a capping layer to the channel substrate. The bare porous polymer monoliths may be mechanically anchored to channel walls and to the capping layer. The bare porous polymer monoliths may be functionalized by ex situ immobilization of capture probes on the monoliths. The monoliths may be functionalized by direct attachment of chitosan.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: October 10, 2023
    Assignee: University of Maryland, College Park
    Inventors: Eric L. Kendall, Erik Wienhold, Omid Rahmanian, Don L. Devoe
  • Patent number: 11784346
    Abstract: Solid-state lithium ion electrolytes of lithium phosphate derivative compounds are provided which contain an anionic framework capable of conducting lithium ions. The activation energy of the lithium phosphate derivative compounds is from 0.18 to 0.34 eV and conductivities are from 10?3 to 12 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium phosphate derivative materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: October 10, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Publication number: 20230314398
    Abstract: The present invention relates an indicator system for assessing a reduction state of unconsolidated material that includes a delivery tube defining an interior chamber, and a substrate disposed within the interior chamber and including a reactive coating thereon. The reactive coating is at least partially removable from the substrate upon exposure to a reducing condition of unconsolidated material over a period of time. An indicator device including a reactive coating comprising a manganese oxide is also disclosed.
    Type: Application
    Filed: April 10, 2023
    Publication date: October 5, 2023
    Applicant: University of Maryland, College Park
    Inventor: Martin C. Rabenhorst
  • Publication number: 20230301787
    Abstract: An implantable acellular polymeric scaffold device functionalized with aggrecan is provided. Also provided are methods of fabricating a polymeric scaffold device, including methods of fabricating the scaffold device via 3D printing. Methods of treating a cartilage defect in a subject in need thereof comprise application of the disclosed scaffold device in combination with microfracture procedures. A specialized lid for a centrifugation well plate is also provided.
    Type: Application
    Filed: May 19, 2023
    Publication date: September 28, 2023
    Applicant: University of Maryland, College Park
    Inventors: Ting Guo, John Patrick Fisher, Hannah Baker, Max Jonah Lerman, Robert Choe
  • Patent number: 11764832
    Abstract: Systems, methods, and media for wireless power transfer are provided.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: September 19, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, WESLEYAN UNIVERSITY
    Inventors: Lei Chen, Steven Mark Anlage, Tsampikos Kottos
  • Patent number: 11741388
    Abstract: The disclosure describes aspects of using multiple species in trapped-ion nodes for quantum networking. In an aspect, a quantum networking node is described that includes multiple memory qubits, each memory qubit being based on a 171Yb+ atomic ion, and one or more communication qubits, each communication qubit being based on a 138Ba+ atomic ion. The memory and communication qubits are part of a lattice in an atomic ion trap. In another aspect, a quantum computing system having a modular optical architecture is described that includes multiple quantum networking nodes, each quantum networking node including multiple memory qubits (e.g., based on a 171Yb+ atomic ion) and one or more communication qubits (e.g., based on a 138Ba+ atomic ion). The memory and communication qubits are part of a lattice in an atomic ion trap. The system further includes a photonic entangler coupled to each of the multiple quantum networking nodes.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: August 29, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Christopher Monroe, Martin Lichtman, Ismail Volkan Inlek, Clayton Crocker, Ksenia Sosnova
  • Patent number: 11734636
    Abstract: Systems, methods, apparatuses, and computer program products for a computer device capable of assessing, measuring, managing, and optimizing cyber risk. For example, certain embodiments described herein may guide risk assessment for individual organizations and for integrated elements of critical infrastructure. Certain embodiments may provide features that make it possible for policy makers and organizational leaders to assess a range of risks introduced by threat actors: a standardized system for classifying cyber threats and events by their effects, tools to associate organizational functions with information technology (IT) network maps or topologies, operations to assess the severity of disruptive and exploitative cyber events, and operations to understand the integrated nature of risk across different parts of a simple organization, across major divisions in a complex organization, or to display the interconnectedness of organizations in a complex system.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: August 22, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, DECISION POINT ANALYTICS
    Inventors: Charles Thomas Harry, Trevor Tart
  • Patent number: 11724024
    Abstract: An inverted battery device has a pair of electrodes, first and second volumes, and an electrical conductor. One of the pair of electrodes is configured as an anode and the other is configured as a cathode. A first electrolyte solution and the anode are disposed in the first volume, while a second electrolyte solution and the cathode are disposed in the second volume. The electrical conductor extends between the first and second volumes to couple the pair of electrodes to each other such that electrons travel between the pair of electrodes. The device is constructed to produce ions rather than electrons such that an ionic current can be generated in a separate system, such as a biological system or other ionic system, when coupled between the anode and cathode.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 15, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Chengwei Wang
  • Publication number: 20230254047
    Abstract: Aspects of the present disclosure describe techniques for controlling coherent crosstalk errors that occur in multi-channel acousto-optic modulators (AOMs) by applying cancellation tones to reduce or eliminate the crosstalk errors. For example, a method and systems are described that include applying a first radio frequency (RF) tone to generate a first acoustic wave in a first channel of the multi-channel AOM, wherein a portion of the first acoustic wave interacts with a second channel to cause a crosstalk effect, and applying a second RF tone to generate a second acoustic wave in the second channel, wherein the second acoustic wave reduces or eliminates the crosstalk effect caused by the portion of the first acoustic wave.
    Type: Application
    Filed: November 11, 2022
    Publication date: August 10, 2023
    Applicant: University of Maryland, College Park
    Inventors: Kristin M BECK, Marko CETINA, Michael Lurie GOLDMAN
  • Patent number: 11710845
    Abstract: An electrochemical module (EM) transfers a fluid across a membrane thereof using oxygen as a carrier gas. The EM has an anion exchange membrane (AEM) disposed between a first and second electrodes, each of which includes a catalyst. At an inlet side, the catalyst facilitates reaction of the fluid with carrier gas, such that an anion is formed. The anion is transported across the AEM in the presence of an electric field applied to the electrodes. At an outlet side, the catalyst facilitates dissociation of the anion back to the fluid and carrier gas. In some embodiments, the fluid comprises carbon dioxide, and the transporting by the EM is part of a heating/cooling cycle or a power generation cycle, or is used to capture carbon dioxide for storage or regeneration of stale air. In some embodiments, the fluid comprises water vapor, and the transporting by the EM dehumidifies air.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: July 25, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chunsheng Wang, Ye Tao, K. Reinhard Radermacher, Yunho Hwang, Joseph Patrick Baker, Zhenyuan Mei
  • Patent number: PP35367
    Abstract: A new and distinctive variety of Malus domestica Borkh, apple tree named ‘MD-TAP2’ is distinguished by its attractive tree architecture, reduced need for hand pruning and training, observed tolerance to high temperatures during the growing season, fireblight (Erwinia amylovora) and fruit which is harvested two weeks earlier than its seed parent.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: September 5, 2023
    Assignee: University of Maryland, College Park
    Inventors: Christopher S. Walsh, Julia M. Harshman, Kathleen W. Hunt