Patents Assigned to University of Texas Systems
  • Patent number: 11471509
    Abstract: The present disclosure describes the fusogenic activity of the Myomaker protein. This polypeptide, when expressed in non-muscle cells, is able to drive fusion of the cell with a muscle cell, but not with other non-muscle cells. The use of this protein and cell expressing it in the delivery of exogenous genetic material to muscle cells also is described.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: October 18, 2022
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Eric Olson, Douglas P. Millay
  • Patent number: 11474145
    Abstract: Embodiments according to the invention can provide methods of testing a SiC MOSFET, that can include applying first and second voltage levels across a gate-source junction of a SiC MOSFET and measuring first and second voltage drops across a reverse body diode included in the SiC MOSFET responsive to the first and second voltage levels, respectively, to provide an indication of a degradation of a gate oxide of the SiC MOSFET and an indication of contact resistance of the SiC MOSFET, respectively.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 18, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Enes Ugur, Bilal Akin, Fei Yang, Shi Pu, Chi Xu
  • Patent number: 11472813
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: October 18, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Patent number: 11469131
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise more alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 11, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Patent number: 11466373
    Abstract: Buffer generators are described based on electrodialytic devices. The methods of using these devices can generate buffers for diverse applications, including separations, e.g., HPLC and ion chromatography. Also provided are chromatographic devices including the buffer generators, generally located upstream from a chromatography column, sample injector valve or both.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 11, 2022
    Assignees: Board of Regents, The University of Texas System, Dionex Corporation
    Inventors: Purnendu K. Dasgupta, Yongjing Chen, Kannan Srinivasan
  • Publication number: 20220313748
    Abstract: Provided herein are methods for identifying patient having treatment resistant cancers, such as HPV-related cancers. Therapeutic methods for treatment of cancers are also provided.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 6, 2022
    Applicant: Board of Regents, The University of Texas System
    Inventor: Ann KLOPP
  • Patent number: 11459617
    Abstract: Provided herein are methods of determining tumoral sensitivity to hormonal (endocrine) therapy based upon an index of estrogen receptor (ER)- and progesterone receptor (PR)-related genes, referred to as the sensitivity to endocrine therapy index (SETER/PR index), and may have additional consideration for the proportion of ER gene (ESRI) RNA transcripts that contain a mutation relative to the value of the SETER/PR index. Further provided are methods of treating breast cancer patients determined to be sensitive to an endocrine therapy by the SETER/PR index.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 4, 2022
    Assignees: Board of Regents, The University of Texas System, Yale University
    Inventors: William Fraser Symmans, Bruno Sinn, Christos Hatzis, Chunxiao Fu, Rosanna Lau
  • Publication number: 20220305043
    Abstract: In an embodiment, the present disclosure pertains to a composition. In some embodiments, the composition includes a cross-linked network of cyclic macromolecules. In some embodiments, the cyclic macromolecules are covalently cross-linked to one another by a plurality of cross-linking agents. In some embodiments, at least some of the cross-linking agents are covalently functionalized with a plurality of functional groups. In some embodiments, the plurality of functional groups include a chain of at least three atoms that protrude out of the cross-linking agents. In some embodiments, the cross-linking agents and the functional groups form a polymer matrix, such as poly (?-amino ester). In some embodiments, the composition is in the form of particles. In another embodiment, the present disclosure pertains to a method of administering an active agent to a subject. In some embodiments, the method includes administering a composition of the present disclosure to the subject.
    Type: Application
    Filed: March 25, 2020
    Publication date: September 29, 2022
    Applicant: Board of Regents of The University of Texas System
    Inventors: Sauradip Chaudhuri, Rachael Sirianni
  • Publication number: 20220305015
    Abstract: Provided herein are methods for identifying and treating cancers that are resistant to PARP inhibition. Methods for sensitizing cancers to a PARP inhibitor therapy are also provided. In some aspects, PARP inhibitor cancers are treated with a PARP inhibitor therapy in combination with a receptor tyrosine kinase inhibitor.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 29, 2022
    Applicant: Board of Regents, The University of Texas System
    Inventors: Mien-Chie HUNG, Mei-Kuang CHEN, Yu-Yi CHU
  • Patent number: 11452775
    Abstract: This invention provides biomarkers (e.g., methylation of R198 or R200 of EGFR or the presence of an arginine at position 497 of EGFR) for the prediction of resistance to cetuximab therapy. This invention also provides methods for the selection of patients for combination therapy with cetuximab and PRMT inhibitors.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: September 27, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Mien-Chie Hung, Hsin-Wei Liao, Jung-Mao Hsu
  • Patent number: 11453590
    Abstract: Effective techniques for patterning carbon nanotube (CNT) sheets are disclosed herein. A carbon nanotube forest is grown on a catalyst-incorporated substrate, CNT sheets are drawn from the carbon nanotube forest, the CNT sheets are stacked on a substrate, followed by etching the CNT sheets by using a shadow mask through a controlled etch process. In some implementations, etching of the CNT sheets is carried out in a capacitively coupled plasma (CCP) etching system, where the CNT sheets are selectively exposed, in a controlled environment, to oxygen plasma via the shadow mask.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: September 27, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Behnoush Dousti, Gil Sik Lee, Negar Geramifard
  • Publication number: 20220296102
    Abstract: Method and devices are provided for assessing tissue samples from a plurality of tissue sites in a subject using molecular analysis. In certain aspects, devices of the embodiments allow for minimally invasive collection of liquid tissue samples and delivery of the samples for mass spectrometry analysis.
    Type: Application
    Filed: November 5, 2021
    Publication date: September 22, 2022
    Applicant: Board of Regents, The University of Texas System
    Inventors: Livia Schiavinato Eberlin, Thomas Milner, Jialing Zhang, Noah Giese, Nitesh Katta
  • Patent number: 11448103
    Abstract: In one embodiment, an electromagnetic soft actuator includes a first soft outer member comprising a soft internal electrically conductive coil, a second soft outer member comprising a soft internal electrically conductive coil, and a soft inner shaft on which the first and second soft outer members are mounted, the first and second soft outer members being linearly displaceable along a length of the soft inner shaft, the soft inner shaft comprising a permanent magnet, wherein the first and second outer members linearly move under an electromagnetic force relative to the soft inner shaft and each other when an electric current is applied to the soft internal electrically conductive coils.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 20, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Amir Jafari, Nafiseh Ebrahimi
  • Patent number: 11446302
    Abstract: The present disclosure provides methods of treating cancer in a patient determined to have an EGFR and/or HER2 exon 20 mutation, such as an insertion mutation, by administering a third-generation tyrosine kinase inhibitor, such as poziotinib or afatinib.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 20, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jacqulyne Robichaux, Monique Nilsson, John V. Heymach
  • Patent number: 11447593
    Abstract: Provided herein are block copolymers comprising a hydrophilic polymer segment and a hydrophobic polymer segment, wherein the hydrophilic polymer segment comprises a polymer selected from the group consisting of: poly(ethylene oxide) (PEO), poly(methacrylate phosphatidyl choline) (MPC), and polyvinylpyrrolidone (PVP), wherein the hydrophobic polymer segment comprises wherein R? is —H or —CH3, wherein R is —NR1R2, wherein R1 and R2 are alkyl groups, wherein R1 and R2 are the same or different, wherein R1 and R2 together have from 5 to 16 carbons, wherein R1 and R2 may optionally join to form a ring, wherein n is 1 to about 10, and wherein x is about 20 to about 200 in total. Also provided are pH-sensitive micelle compositions for therapeutic and diagnostic applications.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: September 20, 2022
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Jinming Gao, David Boothman, Kejin Zhou, Xiaonan Huang, Yiguang Wang
  • Patent number: 11448965
    Abstract: Disclosed herein are methods for patterning two-dimensional atomic layer materials, the methods comprising: illuminating a first location of an optothermal substrate with electromagnetic radiation, wherein the optothermal substrate converts at least a portion of the electromagnetic radiation into thermal energy, and wherein the optothermal substrate is in thermal contact with a two-dimensional atomic layer material; thereby: generating an ablation region at a location of the two-dimensional atomic layer material proximate to the first location of the optothermal substrate, wherein at least a portion of the ablation region has a temperature sufficient to ablate at least a portion of the two-dimensional atomic layer material within the ablation region, thereby patterning the two-dimensional atomic layer material. Also disclosed herein are systems for performing the methods described herein, patterned two-dimensional atomic layer materials made by the methods described herein and methods of use thereof.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: September 20, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Yuebing Zheng, Linhan Lin, Jingang Li
  • Patent number: 11447830
    Abstract: Methods for identifying and treating cancers that are DNA repair, such as homologous recombination (HR) repair, defective or sensitive to PARP inhibitors or platinum-based therapy. In some aspects, DNA repair, such as HR repair, defective cancers are treated with a PARP inhibitor therapy or cisplatin. Methods for sensitizing cancers to a PARP inhibitor therapy are also provided.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: September 20, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Shiaw-Yih Lin, Daniel McGrail, Gordon Mills
  • Patent number: 11449658
    Abstract: A method can be executed by at least one processor of a computer to generate synthetic Integrated Circuit (IC) layout patterns, where the method can optionally include accessing attribute values of the IC layout pattern features generated using IC layout patterns from at least one at least one previous generation semiconductor fabrication technology node.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 20, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gaurav Rajavendra Reddy, Mohammad M. Bidmeshki, Georgios Makris
  • Publication number: 20220288121
    Abstract: Provided herein are cryopreservation compositions and methods for cells of any kind, including for cells for adoptive cell therapy that are off-the-shelf cells. The cells for cryopreservation may be expanding NK cells expressing chimeric antigen receptors. In specific cases, the cryopreservation media comprises a cryoprotectant, such as DMSO, glycerol or hydroxyethol starch; serum or a non-serum alternative, such as platelet lysate; and one or more cytokines that are either natural, modified, synthetic, or recombinant.
    Type: Application
    Filed: August 25, 2020
    Publication date: September 15, 2022
    Applicant: Board of Regents, The University of Texas System
    Inventors: Katy REZVANI, Enli LIU, Elizabeth SHPALL, Rafet BASAR, David MARIN COSTA
  • Patent number: 11440317
    Abstract: In an embodiment, a method for controlling a printer is provided. The method includes: receiving a set of parameters associated with a printer by a computing device, wherein the printer is depositing ink on a substrate to generate a line; measuring a width of the line by the computing device; receiving a duty cycle associated with the printer by the computing device; using the received duty cycle, the set of parameters, and a model, estimating one or more unknown parameters of the set of parameters by the computing device; receiving a desired width of the line by the computing device; and if the desired width is not the same as the measured width: adjusting the duty cycle associated with the printer based on the set of parameters and the model so that the measured width is closer to the desired width by the computing device.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 13, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Nicholas R. Gans, Bashir H. Jafari