Patents Assigned to University of Virginia Patent Foundation
  • Patent number: 10582873
    Abstract: A method for analysis of cardiac rhythms, based on calculations of entropy and moments of interbeat intervals. An optimal determination of segments of data is provided that demonstrate statistical homogeneity, specifically with regard to moments and entropy. The invention also involves calculating moments and entropy on each segment with the goal of diagnosis of cardiac rhythm. More specifically, an absolute entropy measurement is calculated and provided as a continuous variable, providing dynamical information of fundamental importance in diagnosis and analysis. Through the present invention, standard histograms, thresholds, and categories can be avoided.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 10, 2020
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: J. Randall Moorman, Douglas E. Lake
  • Patent number: 10580481
    Abstract: A finite state machine circuit can include a plurality of rows of gain cell embedded Dynamic Random Access Memory (GC-eDRAM) cells that can be configured to store state information representing all N states expressed by a finite state machine circuit. A number of eDRAM switch cells can be electrically coupled to the plurality of rows of the GC-eDRAM cells, where the number of eDRAM switch cells can be arranged in an M×M cross-bar array where M is less than N, and the number of eDRAM switch cells can be configured to provide interconnect for all transitions between the all N states expressed by the finite state machine circuit.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 3, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Elaheh Sadredini, Gholamreza Rahimi, Kevin Skadron, Mircea Stan
  • Publication number: 20200065278
    Abstract: A system-on-a-chip (SoC) comprises a power supply circuit coupled to an energy harvesting transducer and configured to operate using energy from the energy harvesting transducer; a microcontroller coupled to a system bus of the SoC; an interface configured to communicate with the microcontroller via the system bus of the SoC, the interface configured to generate data upon occurrence of an event; and a computation accelerator configured to establish, based on an energy consumption level of the SoC, a data path between the interface and the computation accelerator that at least partially bypasses the system bus such that the data is transmitted to the computation accelerator via the data path.
    Type: Application
    Filed: June 1, 2018
    Publication date: February 27, 2020
    Applicants: University of Virginia Patent Foundation, University of Virginia Patent Foundation
    Inventors: Christopher J. Lukas, Benton H. Calhoun, Farah B. Yahya
  • Patent number: 10561337
    Abstract: Methods, systems, and computer-readable media for rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction are disclosed. In one embodiment, a method includes acquiring magnetic resonance data associated with an area of interest of a subject. The magnetic resonance data includes associated with arterial spin labeling (ASL) of the area of interest. The method also includes performing image reconstruction on the acquired resonance data. The image reconstruction includes compressed sensing enforcing a model-based sparsity constraint, where the model-based sparsity constraint is based on an ASL signal prototype dictionary.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: February 18, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Li Zhao, Craig Meyer
  • Patent number: 10562890
    Abstract: This invention relates to compounds that bind to wild-type CBF? and inhibit CBF? binding to RUNX proteins. The potent compounds of the invention inhibit this protein-protein interaction at low micromolar concentrations, using allosteric mechanism to achieve inhibition, displace wild-type CBF? from RUNX1 in cells, change occupancy of RUNX1 on target genes, and alter gene expression of RUNX1 target genes. These inhibitors show clear biological effects consistent with on-target RUNX protein activity. Pharmaceutical compositions containing a compound of the invention and a pharmaceutically acceptable carrier represent a separate embodiment of the invention. Another embodiment of the invention are methods of treating a RUNX-signaling-dependent cancer that expresses wild-type CBF? in a subject in need thereof by administering to the subject a therapeutically effective amount of a compound of the invention.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: February 18, 2020
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: John H. Bushweller, Anuradha Illendula
  • Publication number: 20200046268
    Abstract: An insulin device configured to control insulin dosage adapts a basal rate profile, using a sensor configured to produce a blood glucose level measurement data, and detect changes of the blood glucose level measurement data over time. A processor is configured to receive the blood glucose level measurement data and a basal rate profile. A basal rate set point corresponds to an insulin delivery reference for a nominal blood glucose. The insulin device includes an insulin dispensing valve controlled by the processor to administer insulin in accordance with the received basal rate profile. The processor is configured to update the basal rate set point over a time period based on both an assessment of at least one of a risk of hyperglycemia and a risk of hypoglycemia from historical blood glucose data, and patterns of actions taken by the insulin device to mitigate glycemic risk during the time period.
    Type: Application
    Filed: February 15, 2018
    Publication date: February 13, 2020
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Stephen D. PATEK, Jonathan HUGHES
  • Patent number: 10557908
    Abstract: In some aspects, the disclosed technology relates to magnetic field monitoring of spiral echo train imaging. In one embodiment, a method for spiral echo train imaging of an area of interest of a subject includes measuring k-space values and field dynamics corresponding to each echo of a spiral echo pulse train, using a dynamic field camera and a magnetic resonance imaging (MRI) system. The dynamic field camera is configured to measure characteristics of fields generated by the MRI system; the characteristics include at least one imperfection associated with the MRI system. The spiral echo pulse train corresponds to a spiral trajectory scan from the MRI system that obtains magnetic resonance imaging data using a pulse sequence which applies spiral gradients in-plane with through-plane phase encoding.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: February 11, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Craig H. Meyer, John P. Mugler, III, Samuel W. Fielden, Gudrun Ruyters, Berthold Kiefer, Josef Pfeuffer
  • Patent number: 10550162
    Abstract: Compositions and methods for genetically modifying the production levels of nicotine and other alkaloids in plants are provided.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: February 4, 2020
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Michael Paul Timko, Paul J Rushton, Marta Tatiana Bokowiec
  • Patent number: 10546659
    Abstract: A simulation environment for in silico testing of monitoring methods, open-loop and closed-loop treatment strategies in type 1 diabetes. Some exemplary principal components of the simulation environment comprise, but not limited thereto, the following: 1) a “population” of in silico “subjects” with type 1 diabetes in three age groups; 2) a simulator of CGM sensor errors; 3) a simulator of insulin pumps and discrete insulin delivery; 4) an interface allowing the input of user-specified treatment scenarios; and 5) a set of standardized outcome measures and graphs evaluating the quality of the tested treatment strategies. These components can be used separately or in combination for the preclinical evaluation of open-loop or closed-loop control treatments of diabetes.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 28, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Boris P. Kovatchev, Marc D. Breton, Claudio Cobelli, Chiara Dalla Man
  • Publication number: 20200023126
    Abstract: A technique for treating diabetes that recognizes patient insulin sensitivity is a time-varying physiological parameter. The described techniques for treating diabetes include measuring interstitial fluid glucose concentration, reading insulin delivery data, determining patient insulin sensitivity based on the interstitial fluid glucose concentration and insulin delivery data, and a time-varying physiological parameter, and dispensing an insulin dose from an insulin delivery device based on the determined patient insulin sensitivity.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 23, 2020
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Marc D. BRETON, Boyi JIANG, Chiara FABRIS
  • Publication number: 20200016232
    Abstract: Both purinergic signaling through nucleotides such as ATP and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the ?1 adrenoreceptor (?1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by ?1AR signaling.
    Type: Application
    Filed: April 12, 2019
    Publication date: January 16, 2020
    Applicant: University of Virginia Patent Foundation
    Inventors: Brant E. Isakson, Marie Billaud, Leon J. DeLalio, Thu Le
  • Publication number: 20200015757
    Abstract: A system for generating a hypoglycemia risk signal associated with exercise-induced Hypoglycemia. The system can include a processor configured to obtain a blood glucose signal (BGstart), a ratio of absolute insulin on board over total daily insulin signal (IOBabs/TDI), and an initial glycemic slope signal (S0); generate a hypoglycemia risk signal based on a hypoglycemia prediction algorithm that determines the probability of a user being hypoglycemic during or after exercise based on the obtained BGstarts, IOBabs/TDI and S0.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 16, 2020
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Marc D. BRETON, Najib BEN-BRAHIM
  • Patent number: 10533959
    Abstract: A sample holding device and related method designed to facilitate inexpensive and reliable testing of materials or specimens with beam diffraction and scattering techniques. The device features a sample receptacle that is made out of a polymer, cellulose, polymeric material, or cellulosic material. The flexible nature and low melting point of the sample receptacle allows for reliable sealing against the vacuum or gaseous environment used for beam diffraction or scattering analysis. The sample holding device can be considered disposable because of its low cost, eliminating the need for complex or unreliable cleaning procedures.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 14, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Michael C. Wiener, Peter Horanyi
  • Patent number: 10533226
    Abstract: The gene responsible for encoding SERT has a functional polymorphism at the 5?-regulatory promoter region, which results in two forms, long (L) and short (S). The LL-genotype is hypothesized to play a key role in the early onset of alcohol use. The present invention discloses the differences in treatment and diagnosis based on the L or short genotypes as well as on a single nucleotide polymorphism of the SERT gene, the 3? UTR SNP rs1042173. The present invention demonstrates the efficacy of using the drug ondansetron and similar drugs for treatment based on variations in the polymorphisms of the SERT gene as well as methods for diagnosing susceptibility to abuse of alcohol and other addiction-related diseases and disorders.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: January 14, 2020
    Assignee: University of Virginia Patent Foundation
    Inventor: Bankole A. Johnson
  • Patent number: 10536036
    Abstract: An integrated circuit, such as included as a portion of a sensor node, can include a regulator circuit having an input coupleable to an energy harvesting transducer. The integrated circuit can include a wireless receiver circuit coupled to the regulator circuit and configured to wirelessly receive at least enough operating energy to establish operation of the sensor node without requiring the energy harvesting transducer. The integrated circuit can include a digital processor circuit coupled to the regulator circuit and a power management processor circuit. The digital processor circuit or one or more other circuits can include a subthreshold operational mode established by the power management processor circuit based on the selected energy consumption level. For example, establishing the subthreshold operational mode can include adjusting or selecting a supply voltage so as to establish subthreshold operation of a field effect transistor (FET) in the digital processor circuit or other circuits.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: January 14, 2020
    Assignees: University of Virginia Patent Foundation, University of Washington through its Center for Commercialization
    Inventors: Benton H. Calhoun, Brian Otis
  • Patent number: 10507315
    Abstract: A catheter system including an elongate tubular member having a proximal end portion, a distal end portion and a lumen extending through at least a portion of a length of the elongate tubular member. The distal end portion of the elongate member is dimensioned and adapted to advance to or in proximity to a treatment site of a subject. A microbubble device is in fluid communication with the lumen. The microbubble device includes at least one input port for receiving a flow of material into the device and an output port configured to output microbubbles from the microbubble device. A second tubular member is in fluid communication with one of the at least one input ports. A pressure fitting arrangement is adapted to maintain a seal between the second tubular member and the input port.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 17, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: John A. Hossack, Brian R. Wamhoff, Alexander L. Klibanov, Johnny Chen, Brent A. French
  • Publication number: 20190374137
    Abstract: A structure, method, and computer program product for a diabetes control system provides, but is not limited thereto, the following: open-loop or closed-loop control of diabetes that adapts to individual physiologic characteristics and to the behavioral profile of each person. An exemplary aspect to this adaptation is biosystem (patient or subject) observation and modular control. Consequently, established is the fundamental architecture and the principal components for a modular system, which may include algorithmic observers of patients' behavior and metabolic state, as well as interacting control modules responsible for basal rate, insulin boluses, and hypoglycemia prevention.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Boris P. KOVATCHEV, Stephen D. PATEK, Marc D. BRETON
  • Publication number: 20190374627
    Abstract: A set of target peptides are presented by HLA class I molecules on the surface of hepatocellular carcinoma (HCC) ceils and/or esophageal cancer cells. They are envisioned to among other things (a) stimulate an immune response to the proliferative disease, e.g., HCC and/or esophageal cancer, (b) function as immunotherapeutics in adoptive T-cell therapy or as a vaccine, (c) facilitate antibody recognition of tumor boundaries in surgical pathology samples, (d) act as biomarkers for early detection and/or diagnosis of the disease, and (e) act as targets in the generation anti-body-like molecules which recognize the target-peptide/MHC complex.
    Type: Application
    Filed: May 5, 2017
    Publication date: December 12, 2019
    Applicants: University of Virginia Patent Foundation, The University of Birmingham
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Paisley Trantham Myers, Mark Cobbold, Nico Büttner, Stacy Alyse Malaker, Sarah Penny
  • Patent number: 10483448
    Abstract: The present disclosure relates to flexible thermoelectric devices. In some embodiments, such devices can comprise a flexible substrate with a first conductive component and a second, different conductive component deposited thereon so as to form a plurality of electrical junctions. The flexible substrate can be a fabric, and the conductive component can be deposited by methods such as stitching of conductive yarns or deposition of conductive inks. The present disclosure further relates to methods of preparing flexible thermoelectric devices and methods of utilizing flexible thermoelectric devices for producing electrical current from waste heat.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 19, 2019
    Assignees: North Carolina State University, University of Virginia Patent Foundation
    Inventors: Jesse Jur, Mark Losego, Patrick E. Hopkins
  • Patent number: RE47863
    Abstract: The present invention relates to novel non-ferromagnetic amorphous steel alloys represented by the general formula: Fe—Mn-(Q)-B-M, wherein Q represents one or more elements selected from the group consisting of Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and M represents one or more elements selected from the group consisting of Cr, Co, Mo, C and Si. Typically the atomic percentage of the Q constituent is 10 or less. An aspect is to utilize these amorphous steels as coatings, rather than strictly bulk structural applications. In this fashion any structural metal alloy can be coated by various technologies by these alloys for protection from the environment. The resultant structures can utilize surface and bulk properties of the amorphous alloy.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 18, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Gary J. Shiflet, S. Joseph Poon, Xiaofeng Gu