Patents Assigned to University of Virginia Patent Foundation
  • Patent number: 10415547
    Abstract: A wind turbine for generating electricity having a turbine assembly mounted on an inner support positioned within an aerodynamic fairing. The turbine assembly has an electrical generator positioned on the inner support and having a rotor shaft rotatable by a rotor blade. The aerodynamic fairing reduces the drag and wake created by the inner support.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: September 17, 2019
    Assignees: University of Virginia Patent Foundation, The Board of Trustees of the University of Illinois
    Inventors: Eric Loth, Michael S. Selig
  • Publication number: 20190275518
    Abstract: A microfluidic device for the detection of drugs, explosives, chemical warfare, or other substances which is able to directly accept a swab into the device for testing. This device additionally contains on-board reagents to perform colorimetric testing for threshold determination directly in the device. These features are useful in a wide array of situations, such as at security checkpoints, environmental monitoring, clinical analysis, which require testing completely unknown substances and therefore must test for multiple different substances in one test. This is especially useful for police and other law enforcement officials who often must use field-deployable platforms making accurate field-testing critical for safety.
    Type: Application
    Filed: December 19, 2018
    Publication date: September 12, 2019
    Applicant: University of Virginia Patent Foundation
    Inventors: Shannon Theresa Krauss, James P. Landers
  • Patent number: 10410330
    Abstract: An image quality assessment and restoration system may include a processor and a memory storing instructions to receive an input image, receive a predetermined number of parameter candidates, generate a reconstructed image from the input image for each parameter candidate, sort the reconstructed images by the overall comparative quality between them and determine the best reconstructed image, calculate the overall comparative qualities between the remaining reconstructed images and the best reconstructed image, eliminate any parameter candidates that are suboptimal based on the calculated overall comparative quality, iteratively generate and sort additional reconstructed images and eliminate suboptimal parameter candidates until each of the remaining parameter candidates is converged, and output the converged parameters for use in image restoration. The overall comparative quality may depend upon the local gradient-based structure information and/or the global texture quality information.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: September 10, 2019
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Haoyi Liang, Daniel Stuart Weller
  • Publication number: 20190271659
    Abstract: An electrochemical device for identifying electroactive analytes. The device includes a substrate; a sample region; a counter electrode; a reference electrode; a working electrode disposed in communication with the substrate, and the working electrode may be an electron conducting fiber. Further, the counter electrode, reference electrode, and working electrode are partially disposed in the sample region configured to be exposed to the electroactive analyte. Further yet, a counter electrode channel, reference electrode channel, and working electrode channel are disposed in the substrate configured to: accommodate each of the counter electrode, reference electrode, and working electrode, respectively, for placement in the respective channels.
    Type: Application
    Filed: November 10, 2017
    Publication date: September 5, 2019
    Applicant: University of Virginia Patent Foundation
    Inventors: Cheng Yang, B. Jill Venton
  • Patent number: 10401488
    Abstract: Disclosed herein are systems, methods, and machine readable media that enable object localization with an RFID infrastructure. Localization is performed by modeling the distance-decaying behavior of received signal strength. Selection of optimally performing tag types and the use of uniformly sensitive tags of those optimal tag types further enhances localization accuracy. When these components are combined, RFID becomes a feasible way to locate moving and stationary objects in a 3D environment that includes other objects, as well as noise and signal pollution.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: September 3, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: Kirti Chawla, Gabriel Robins
  • Patent number: 10401327
    Abstract: A reflection-mode multispectral photoacoustic microscopy (PAM) system and related method is disclosed, based on an optical-acoustic objective in communication with an ultrasonic transducer. In some embodiments of the disclosed technology, when aligned and positioned in a predetermined manner, little to no chromatic aberration is provided, and with convenient confocal alignment of the optical excitation and acoustic detection.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: September 3, 2019
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Song Hu, Rui Cao, John A. Hossack, Joseph P. Kilroy
  • Patent number: 10393755
    Abstract: The present invention provides compositions and methods for identifying subjects suffering from dry eye that can be treated by topical administration of a composition comprising lacritin or a bioactive fragment thereof. The application discloses in part that a ˜90 KDa deglycanated form of syndecan-1 is abundant in tears of normal individuals but not individuals suffering from dry eye, whereas a ˜25 kDa syndecan-1 fragment is detectable in dry, but not normal tears.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 27, 2019
    Assignee: University of Virginia Patent Foundation
    Inventor: Gordon W. Laurie
  • Publication number: 20190254595
    Abstract: An insulin monitoring system includes one or more processors, one or more computer-readable storage devices, and program instructions stored on at least one of the one or more storage devices for execution by at least one of the one or more processors. The program instructions include: first program instructions to track, in real time, the amount of insulin active in a patient; second program instructions to calculate the amount of insulin need of the patient by tracking the patient's metabolic states; third program instructions to compare the insulin active in the patient with the insulin need of the patient; and fourth program instructions to determine an insulin fault level based on the comparison.
    Type: Application
    Filed: June 9, 2016
    Publication date: August 22, 2019
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Marc D. BRETON, Stephen D. PATEK, Boris P. KOVATCHEV
  • Patent number: 10382448
    Abstract: Methods and systems are described for detecting command injection attacks. A positive, taint inference method includes receiving signature fragments on one hand, converting command injection instructions into command fragments on another hand, thus identifying potential attacks upon the condition that a command injection instruction includes critical untrusted parts by using signature fragments. A system detects command injection attacks using this kind of method, and remediates and rejects potential attacks.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 13, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: Anh Nguyen-Tuong, Jack W. Davidson, Michele Co, Jason D. Hiser, John C. Knight
  • Patent number: 10378861
    Abstract: An impulse mitigation system configured to mitigate blast impulse directed to a surface (or structure or target). The system includes a substrate in communication with the surface (or structure or target), wherein the substrate is configured to receive an impulse directed to the surface (or structure or target) and then relocate from the surface (or structure or target) in response to received impulse.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: August 13, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: Haydn N. G. Wadley, Vikram Deshpande
  • Publication number: 20190240434
    Abstract: A device and method that reduces impingement upon fragile airway structures and improves the performance and safety associated with endotracheal devices and related intubation procedures. The endotracheal device includes a lumen such that one end of the lumen includes an anterior beak that includes a distal tip of the anterior beak and a posterior beak having a distal tip of the posterior beak.
    Type: Application
    Filed: July 13, 2017
    Publication date: August 8, 2019
    Applicant: University of Virginia Patent Foundation
    Inventor: Randal S. Blank
  • Patent number: 10368834
    Abstract: An ultrasonic transducer element can configured to generate ultrasonic energy directed into tissue of a subject and configured to receive a portion of the ultrasonic energy reflected by a target located within the tissue. The ultrasonic transducer can include a surface configured to provide or receive the ultrasonic energy, the surface including an area of greater than or equal to about 4?2, or the ultrasonic transducer element can be included in an array having a spacing between at least two adjacent ultrasound elements of less than or equal to about ½?, and the array comprising an aperture that is at least approximately symmetrical in two axes. A three-dimensional representation of one or more of a location, shape, or orientation of at least a portion of the target can be presented via the display.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: August 6, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: F. William Mauldin, Jr., John A. Hossack, Kevin Owen
  • Patent number: 10369120
    Abstract: The present invention provides novel T type calcium channel inhibitors of formula (I), the use thereof in the treatment of a disease or condition in a mammal associated with influx of extracellular calcium via T type calcium channels, wherein R1 is C1-C4 alkyl, hydroxy, or C1-C4 alkoxy; Z is NH, NCH3, O, S, or CH2; Y is NH, O, or CH2 with the proviso that Y and Z are not the same; R2 is H, halo, NH2, C1-C4 alkyl, hydroxy, or C1-C4 alkoxy; m and n are independently selected from integers ranging from 1-5 with the proviso that m+n=an integer ranging from 2-9; and R3 is H, halo, NH2, C1-C4 alkyl, hydroxy, or C1-C4 alkoxy.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: August 6, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: Lloyd S. Gray, Timothy L. Macdonald, Doris M. Haverstick, Jaclyn R. Patterson, William F. McCalmont
  • Patent number: 10363299
    Abstract: An analysis of human CD4+ T-cell epitopes of RV capsid proteins with cross-reactive potential was performed, peptide epitopes of RV-A16 capsid proteins VP1 and VP2 were identified, RV-specific CD4+ T cells were phenotyped for surface markers and cytokine profiles using flow cytometry, and it was found that, among non-infected subjects, circulating RV-A16-specific CD4+ T cells detected at the highest frequencies targeted 10 unique epitopes with diverse HLA-DR binding capacity. T-cell epitopes localized to conserved regions of significance to the virus and were enriched for HLA class I and II binding motifs and were activated in vivo after experimental infection with RV-A16. RV-A16 epitopes constituted species-specific and pan-species varieties, together providing ˜90% coverage of the US population. Cross-reactivity was evidenced for RV-A16 and RV-A39.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: July 30, 2019
    Assignees: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, BENAROYA RESEARCH INSTITUTE AT VIRGINIA MASON
    Inventors: Judith Ann Woodfolk, Lyndsey M. Muehling, William W. Kwok, Duy Tran Mai
  • Patent number: 10358528
    Abstract: The invention provides for new viscoelastic silicone rubbers and compositions and methods for making and using them. The invention provides for viscoelastic silicone rubbers that are stiffer on short timescales than they are on long timescales. When subjected to brief stresses, they are relatively stiff and elastic, and they resist changing shapes. When subjected to sustain stresses, however, they are relatively soft and accommodating, and they gradually change shapes. When those stresses are removed, they gradually return to their original shapes. These viscoelastic silicone rubbers resist compression set and they are extremely resilient in response to sudden impacts. They can be dense rubbers, foam rubbers, and particles.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: July 23, 2019
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventor: Louis A. Bloomfield
  • Publication number: 20190219503
    Abstract: An apparatus related method for measuring a property of a target material. The system may include a pump device that generates a pump beam. A modulation device may receive the pump beam and generate a modulated pump beam by modulating an intensity amplitude of the pump beam, which may be directed to the target material. A probe device may generate a probe beam, which is directed to the target material. A part of the probe beam may be reflected off of the target material, and has similar frequency characteristic as the modulated pump beam. A detection device may detect the reflected probe beam and produce a signal. An analyzing device may receive the signal and calculate the target material property by comparing the modulated frequency characteristics of the signal to those of the pump beam. At least one of the pump and the probe beams may be infrared light.
    Type: Application
    Filed: May 12, 2017
    Publication date: July 18, 2019
    Applicant: University of Virginia Patent Foundation
    Inventors: Brian M. Foley, John T. Gaskins, Patrick E. Hopkins
  • Publication number: 20190218258
    Abstract: Compositions and methods for modifying the production levels of alkaloids in plants are provided. Alkaloid production can be genetically controlled by modulating the transcriptional activation of PMT genes mediated by members of the ERF family and/or Myc family of transcription factors. Novel nucleotide sequences encoding the Myc family of transcription factors are also provided.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 18, 2019
    Applicant: University of Virginia Patent Foundation
    Inventors: Michael Paul Timko, Paul J Rushton, Sheng-Cheng Han, Hongbo Zhang, Marta Tatiana Bokowiec
  • Patent number: 10340972
    Abstract: An apparatus comprises a system on a chip (SoC). In some embodiments, the SoC includes a power supply circuit, a power management circuit operatively coupled to the power supply circuit, a first wireless communications circuit and a second wireless communications circuit. The first wireless communications circuit is configured to receive an RF signal and is operatively coupled to the power supply circuit and the power management circuit. The first wireless communications circuit has a net radio frequency (RF) power gain no more than unity before at least one of downconversion of the RF signal or detection of the RF signal. The second wireless communications circuit is operatively coupled to the power supply circuit and the power management circuit.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: July 2, 2019
    Assignees: University of Virginia Patent Foundation, The Regents of the University of Michigan
    Inventors: Benton H. Calhoun, Yousef Shakhsheer, Yanqing Zhang, Alicia Klinefelter, David D. Wentzloff, Nathan E. Roberts, Seunghyun Oh
  • Publication number: 20190199730
    Abstract: Methods and systems are described for detecting command injection attacks. A positive, taint inference method includes receiving signature fragments on one hand, converting command injection instructions into command fragments on another hand, thus identifying potential attacks upon the condition that a command injection instruction includes critical untrusted parts by using signature fragments. A system detects command injection attacks using this kind of method, and remediates and rejects potential attacks.
    Type: Application
    Filed: April 20, 2017
    Publication date: June 27, 2019
    Applicant: University of Virginia Patent Foundation
    Inventors: Anh Nguyen-Tuong, Jack W. Davidson, Michele Co, Jason D. Hiser, John C. Knight
  • Publication number: 20190192165
    Abstract: A temporary aortic occlusion device is disclosed, having an expandable locator portion and an expandable occlusion portion. The expandable locator portion assists a user in determining whether the distal end of the device has been advanced within a patient's aorta, and the occlusion portion is expanded to occlude the patient's aorta, preferably below the renal arteries.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Applicants: MicroVention, Inc., University of Virginia Patent Foundation, United States of America As Represented By The Secretary Of The Navy
    Inventors: George R. Greene, JR., Ivan Sepetka, Cathy Lei, Rupal Nguyen, Matthew J. Bradley, Stephen T. Ahlers, Carl W. Goforth, James R. Stone