Patents Assigned to University
  • Patent number: 11009353
    Abstract: A non-transitory computer-readable storage medium storing a nonlinear optimization program of a continuous value optimization problem, the program relating to an optimization problem, is provided. The program causes an optimization apparatus to execute repeatedly and alternately procedure comprising: updating a variable of an evaluation function, causing an equality constraint to be gradually approached while searching for a condition at which the evaluation function approaches an extreme value; and updating the variable of the equality constraint, causing a condition at which the evaluation function to become close to the extreme value while keeping the equality constraint satisfied is gradually approached.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: May 18, 2021
    Assignees: DENSO CORPORATION, Kyoto University
    Inventors: Shuntaro Okada, Masayoshi Terabe, Masayuki Ohzeki
  • Patent number: 11007273
    Abstract: The present disclosure provides prochelators as targeted prodrugs for cancer, such as prostate cancer, and methods of making and using the same.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: May 18, 2021
    Assignee: Duke University
    Inventors: Katherine J. Franz, Subha Bakthavatsalam, Tian Zhang, Daniel George, Mark Sleeper
  • Patent number: 11008555
    Abstract: The present disclosure provides variant Cas9 polypeptides, where a variant Cas9 polypeptide of the present disclosure comprises an internal insertion of a heterologous polypeptide. The present disclosure provides nucleic acids comprising nucleotide sequences encoding the variant Cas9 polypeptides. The present disclosure provides host cells comprising a variant Cas9 polypeptide of the present disclosure, or comprising a nucleic acid encoding a variant Cas9 polypeptide of the present disclosure. The present disclosure provides methods of binding and/or modifying a target nucleic acid, involving use of a variant Cas9 polypeptide of the present disclosure.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: May 18, 2021
    Assignee: The Regents of the University of California
    Inventors: Benjamin Oakes, David Savage, Dana Nadler, Abraham I. Flamholz, Jennifer A. Doudna
  • Patent number: 11013100
    Abstract: A method of accelerating charged particles in a plasma and an associated plasma accelerator and electromagnetic radiation source, the method including creating a region of non-uniform electric field within the plasma which propagates through the plasma; using the non-uniform electric field to accelerate a first plurality of charged particles in the direction of propagation of the region of non-uniform electric field; and once the accelerating first plurality of charged particles have propagated part-way through the plasma: adding a second plurality of charged particles to the plasma, such that the second plurality of charged particles propagates through the plasma, the second plurality of charged particles create a local distortion in the non-uniform electric field experienced by the accelerating first plurality of charged particles, and the local distortion in the non-uniform electric field propagates through the plasma with the accelerating first plurality of charged particles; and the method also including
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 18, 2021
    Assignee: University of Strathclyde
    Inventors: Bernhard Hidding, Grace Manahan, Fahim Ahmad Habib, Paul Scherkl
  • Patent number: 11007524
    Abstract: The present disclosure provides an automatic microfluidic system for rapid personalized drug screening including a microfluidic chip. The microfluidic chip includes a fluid storage unit, a fluid driving unit, a reaction unit and a plurality of valve units. The fluid driving unit includes two mixing pumps. Each of the mixing pumps includes two pneumatic micro-pumps, a mixing chamber and a blocking structure. The blocking structure is disposed in the mixing chamber and is connected between the two pneumatic micro-pumps. When the two pneumatic micro-pumps are started alternately, the blocking structure is deflected alone with the operation of the two pneumatic micro-pumps.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: May 18, 2021
    Assignees: National Tsing Hua University, Kaohsiung Chang Gung Medical University
    Inventors: Gwo-Bin Lee, Shiuann-Sheng Lee, Wen-Bin Lee, Huey-Ling You
  • Patent number: 11009620
    Abstract: A method for determining a favorable time window of an infill well of an unconventional oil and gas reservoir, which comprises the following steps: S1, establishing a three-dimensional geological model with physical properties and geomechanical parameters; S2, establishing a natural fracture network model in combination with indoor core-logging-seismic monitoring; S3, calculating complex fractures in hydraulic fracturing of parent wells; S4, establishing an unconventional oil and gas reservoir model and calculating a current pore pressure field; S5, establishing a dynamic geomechanical model and calculating a dynamic geostress field; S6, calculating complex fractures in horizontal fractures of the infill well in different production times of the parent wells based on pre-stage complex fractures and the current geostress field; S7, analyzing a microseismic event barrier region and its dynamic changes in infill well fracturing; and S8, analyzing the productivity in different infill times, and determining an inf
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: May 18, 2021
    Assignee: Chengdu University of Technology
    Inventors: Haiyan Zhu, Yapu Zhao, Jianchun Guo, Xuanhe Tang
  • Patent number: 11006919
    Abstract: Various systems and methods for generating images are provided. In some embodiments, the techniques can include acquiring a medical image and an associated motion characterization. The motion characterization can then be used to generate a plurality of gated image data sets, sorted by phase in the motion cycle. A new amplitude-based motion characterization curve is derived from the association of phases with amplitude-based characteristics in the phase gated images. This newly derived amplitude-based motion characterization curve can then be used to re-sort data according to amplitude-based gating techniques known in the field or with data driven optimization techniques.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: May 18, 2021
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventor: Adam Kesner
  • Patent number: 11007344
    Abstract: A resuscitation device is described that can include an electronic circuit board, a shaft that is operably coupled with the electronic circuit board and has a head, a gas-bag adjacent to the head and configured to store gas, and a valve operably coupled to the gas-bag. The electronic circuit board can actuate the shaft to move. The moving of the shaft can cause the head to compress the gas-bag. The compression of the gas-bag can cause the gas-bag to release gas. Related apparatuses, systems, methods, techniques and articles are also described.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: May 18, 2021
    Assignee: The Aga Khan University
    Inventors: Saleem Sayani, Muhammad Abdul Muqeet, Hafiz Imtiaz Ahmed, Naeem Sheikh, Sannan Ahmed Qureshi, Huba Atiq, Syeda Zoha Raza, Khawaja Mohammad Inam Pal, Syed Shujaat Hussain, Maleeha Naseem, Amna Jawaid, Jonathan Johnson
  • Patent number: 11010849
    Abstract: Systems, methods, and computer program products for determining an application status of an applicant for an educational program may include receiving cohort performance data comprising first data entries for participants that have respectively achieved outcomes for the educational program and applicant performance data comprising second data entries for the applicant, calculating adjusted cohort performance data based on the cohort performance data and first data characteristics, providing a predictor model based on the adjusted cohort performance data and the outcomes, sequentially changing predictive parameters of the first data characteristics to create second data characteristics and creating an adjusted predictor model based on the second data characteristics and the outcomes, calculating adjusted applicant performance data based on the applicant performance data and the second data characteristics, and calculating a probability of success for the applicant in the educational program based on the adjust
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: May 18, 2021
    Assignee: East Carolina University
    Inventor: Robert Todd Watkins, Jr.
  • Patent number: 11008429
    Abstract: Described herein are methods and compositions relating to tunable nanoporous coatings. In certain aspects, described herein are methods and compositions wherein a tunable nanoporous coating comprises a tunable nanoporous membrane which transitions from opaque to transparent upon the application of force, and from transparent to opaque after washing with a solvent.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 18, 2021
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Peng Jiang, Sin-Yen Leo, Calen Leverant, Danielle Liu, Yin Fang
  • Patent number: 11009498
    Abstract: A nanopore-containing substrate includes a substrate, a membrane on the substrate, and at least one nanoscale electronic element disposed on or embedded in the membrane. The membrane defines at least one nanopore. The nanoscale electronic element is aligned with one of the nanopores such that a shortest distance between an edge of the nanoscale electronic element and the edge of the nanopore is less than 50 nm. The nanopores may be formed by etching through a dielectric layer using a solution while applying a voltage to the nanoscale electronic element relative to the solution. The nanopore-containing substrate can be used to detect or sequence a biopolymer, such as a nucleic acid. The nanopore-containing substrate may be used with a biopolymer detection and/or sequencing system.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 18, 2021
    Assignee: Cornell University
    Inventors: Jonathan Alden, Alejandro Cortese, Arthur Barnard, Paul McEuen
  • Patent number: 11007163
    Abstract: Disclosed herein are methods of preventing, inhibiting, reducing, or treating ischemia and reperfusion injury to tissues with glutarate compounds such as ?-ketoglutarate.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: May 18, 2021
    Assignee: The Regents of the University of California
    Inventors: Jing Huang, Xudong Fu, Xiang Yin, Mansoureh Eghbali, Jingyuan Li, Karen Lynn Reue, Laurent Vergnes
  • Patent number: 11009503
    Abstract: A biochemical detection device with a controlled reaction incubation time includes a substrate; a probe disposed on the substrate; a dissolvable material layer disposed on the substrate, wherein the dissolvable material layer has a first opening defined therein, wherein the probe is received in the first opening; an absorbing material layer disposed on the dissolvable material layer and having a second opening defined therein, wherein the first opening communicates with the second opening and is smaller than the second opening; and a non-dissolvable material layer disposed on an inner face of the second opening of the absorbing material layer and on an exposed top face of the dissolvable material layer.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 18, 2021
    Assignee: Research & Business Foundation Sungkyunkwan University
    Inventors: Nae Eung Lee, Won Il Lee
  • Patent number: 11009341
    Abstract: Devices, systems, and methods for determining a distance between at least two points are disclosed and described, wherein interferometry technology is utilized to determine such distances.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 18, 2021
    Assignee: University of Utah Research Foundation
    Inventor: Clayton C. Williams
  • Patent number: 11008589
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: May 18, 2021
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11008524
    Abstract: A two-reactor catalytic system including a catalytic membrane gasification reactor and a catalytic membrane water gas shift reactor. The catalytic system, for converting biomass to hydrogen gas, features a novel gasification reactor containing both hollow fiber membranes that selectively allow O2 to permeate therethrough and a catalyst that facilitates tar reformation. Also disclosed is a process of converting biomass to H2. The process includes the steps of, among others, introducing air into a hollow fiber membrane; mixing the O2 permeating through the hollow fiber membrane and steam to react with biomass to produce syngas and tar; and reforming the tar in the presence of a catalyst to produce more syngas.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: May 18, 2021
    Assignee: National University of Singapore
    Inventors: Sibudjing Kawi, Kus Hidajat, Usman Oemar, Ashok Jangam, Ming Li Ang, Yasotha Kathiraser, Zhigang Wang
  • Patent number: 11008605
    Abstract: Provided is a method for modifying a ssRNA at the 3? end, the method including contacting the strand with a ssRNA 2?-O-methyltransferase in the presence of a co-factor, under conditions which allow for the transfer by the ssRNA 2?-O-methyltransferase of a part of the co-factor onto the 3? end of the ssRNA to form a modified ssRNA, wherein the ssRNA bears 2?-OH group at 3? terminal nucleotide and wherein the part of the co-factor transferred includes a reporter group or a functional group.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: May 18, 2021
    Assignee: Vilnius University
    Inventors: Saulius Klimasauskas, Giedrius Vilkaitis, Milda Mickute
  • Patent number: 11006744
    Abstract: A desk includes a tabletop and at least one base member supporting the tabletop. A footrest is disposed on the at least one base member beneath the tabletop. The footrest is movable between a stowed position toward a back of the desk and a deployed position toward a front of the desk. At least one mechanism is disposed on the at least one base member and operatively coupled to the footrest. The at least one mechanism moving the footrest between the stowed and deployed positions. A floor mat is disposed with the footrest. The floor mat is movable with the footrest between a stowed mat position and a deployed mat position.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 18, 2021
    Assignee: The Texas A&M University System
    Inventor: Mark E. Benden
  • Patent number: 11007455
    Abstract: A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: May 18, 2021
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy
  • Patent number: D919779
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: May 18, 2021
    Assignee: Universal Beauty Products Incorporated
    Inventor: Amy Carra