Abstract: An arrangement of two shutters radially outward from an injector block and a susceptor onto which a wafer carrier is removably mounted are configured to provide a flowpath through a reactor chamber that does not exhibit a vortex, thereby reducing or eliminating buildup on the inside of the reactor chamber and facilitating large temperature gradient between the injector block and the wafer carrier. This can be accomplished by introduction of a purge gas flow at a radially inner wall of an upper shutter, and in some embodiments the purge gas can have a different chemical composition than the precursor gas used to grow desired epitaxial structures on the wafer carrier.
Type:
Grant
Filed:
March 2, 2017
Date of Patent:
February 25, 2020
Assignee:
Veeco Instruments Inc.
Inventors:
Bojan Mitrovic, Eric Armour, Ian Kunsch
Abstract: A self-centering wafer carrier system for a chemical vapor deposition (CVD) reactor includes a wafer carrier comprising an edge. The wafer carrier at least partially supports a wafer for CVD processing. A rotating tube comprises an edge that supports the wafer carrier during processing. An edge geometry of the wafer carrier and an edge geometry of the rotating tube being chosen to provide a coincident alignment of a central axis of the wafer carrier and a rotation axis of the rotating tube during process at a desired process temperature.
Type:
Application
Filed:
July 17, 2019
Publication date:
November 28, 2019
Applicant:
Veeco Instruments, Inc.
Inventors:
Sandeep Krishnan, Alexander I. Gurary, Chenghung Paul Chang, Earl Marcelo
Abstract: A self-centering wafer carrier system for a chemical vapor deposition (CVD) reactor includes a wafer carrier comprising an edge. The wafer carrier at least partially supports a wafer for CVD processing. A rotating tube comprises an edge that supports the wafer carrier during processing. An edge geometry of the wafer carrier and an edge geometry of the rotating tube being chosen to provide a coincident alignment of a central axis of the wafer carrier and a rotation axis of the rotating tube during process at a desired process temperature.
Type:
Grant
Filed:
June 10, 2016
Date of Patent:
October 8, 2019
Assignee:
Veeco Instruments, Inc.
Inventors:
Sandeep Krishnan, Alexander I. Gurary, Chenghung Paul Chang, Earl Marcelo
Abstract: Pattern-multiplication via a multiple step ion beam etching process utilizing multiple etching steps. The ion beam is stationary, unidirectional or non-rotational in relation to the surface being etched during the etching steps, but sequential etching steps can utilize an opposite etching direction. Masking elements are used to create additional masking elements, resulting in decreased spacing between adjacent structures and increased structure density.
Abstract: In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor.
Type:
Grant
Filed:
April 24, 2018
Date of Patent:
July 30, 2019
Assignee:
Veeco Instruments Inc.
Inventors:
Michael Murphy, Richard Hoffman, Jonathan Cruel, Lev Kadinski, Jeffrey C. Ramer, Eric A. Armour
Abstract: A wafer carrier for use in a system for growing epitaxial layers on one or more wafers by chemical vapor deposition. The wafer carrier includes wafer retention pockets recessed in its body. Each pocket includes a floor surface and a peripheral wall surface surrounding the floor surface and defining a periphery of that pocket. Each pocket has a center situated along a corresponding wafer carrier radial axis. In each of the pockets, a set of bumpers is positioned primarily at a distal portion of the wafer retention pocket opposite the central axis so as to maintain a gap of at least a predefined size between the peripheral wall surface at the distal portion and an edge of a wafer to be placed in the wafer retention pocket.
Type:
Grant
Filed:
April 18, 2012
Date of Patent:
June 11, 2019
Assignee:
Veeco Instruments Inc.
Inventors:
Sandeep Krishnan, Jeffrey Scott Montgomery, Lukas Urban, Alexander I. Gurary, Yuliy Rashkovsky
Abstract: A method of modifying a substrate carrier to improve process performance includes depositing material or fabricating devices on a substrate supported by a substrate carrier. A parameter of layers deposited on the substrate is then measured as a function of their corresponding positions on the substrate carrier. The measured parameter of at least some devices fabricated on the substrate or a property of the deposited layers is related to a physical characteristic of substrate carrier to obtain a plurality of physical characteristics of the substrate carrier corresponding to a plurality of positions on the substrate carrier. The physical characteristic of the substrate carrier is then modified at one or more of the plurality of corresponding positions on the substrate carrier to obtain desired parameters of the deposited layers or fabricated devices as a function of position on the substrate carrier.
Abstract: Apparatus for treating wafers using a wafer carrier rotated about an axis is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
Type:
Grant
Filed:
December 21, 2011
Date of Patent:
January 1, 2019
Assignee:
Veeco Instruments Inc.
Inventors:
Bojan Mitrovic, Guanghua Wei, Eric A. Armour, Ajit Paranjpe
Abstract: A wafer carrier and methods of making the same for use in a system for growing epitaxial layers on one or more wafers by chemical vapor deposition. The wafer carrier includes wafer retention pockets recessed in its body. A thermally-insulating spacer is situated at least partially in the at least one wafer retention pocket and arranged to maintain a spacing between the peripheral wall surface and the wafer, the spacer being constructed from a material having a thermal conductivity less than a thermal conductivity of the wafer carrier such that the spacer limits heat conduction from portions of the wafer carrier body to the wafer. The wafer carrier further includes a spacer retention feature that engages with the spacer and includes a surface oriented to prevent centrifugal movement of the spacer when subjected to rotation about the central axis.
Type:
Grant
Filed:
March 15, 2013
Date of Patent:
January 1, 2019
Assignee:
Veeco Instruments Inc.
Inventors:
Sandeep Krishnan, William E. Quinn, Jeffery S. Montgomery, Joshua Mangum, Lukas Urban
Abstract: A wafer carrier for use in a chemical vapor deposition (CVD) system includes a plurality of wafer retention pockets, each having a peripheral wall surface surrounding a floor surface and defining a periphery of that wafer retention pocket. Each wafer retention pocket has a periphery with a shape defined by at least a first arc having a first radius of curvature situated around a first arc center and a second arc having a second radius of curvature situated around a second arc center. The second arc is different from the first arc, either by its radius of curvature, arc center, or both.
Abstract: The invention relates generally to semiconductor fabrication technology and, more particularly, to chemical vapor deposition (CVD) processing and associated apparatus for addressing temperature non-uniformities on semiconductor wafer surfaces. Embodiments include a wafer carrier for use in a system for growing epitaxial layers on one or more wafers by CVD, the wafer carrier comprising a top plate and base plate which function coordinately to reduce temperature variability caused during CVD processing.
Abstract: A terminal for mechanical support of a heating element, includes a base device, a mounting device, the mounting device adapted to support the heating element, and a support device connecting the base device to the mounting device, the support device allowing displacement of the heating element about a radial axis and less than about 10% displacement of the heating element about a tangential and/or axial axis.
Type:
Grant
Filed:
August 7, 2012
Date of Patent:
November 20, 2018
Assignees:
Plansee SE, Veeco Instruments Inc.
Inventors:
Arno Plankensteiner, Christian Feist, Vadim Boguslavskiy, Alexander I. Gurary, Chenghung Paul Chang
Abstract: A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.
Type:
Application
Filed:
July 3, 2018
Publication date:
November 8, 2018
Applicant:
Veeco Instruments Inc.
Inventors:
Mikhail Belousov, Bojan Mitrovic, Keng Moy