Patents Assigned to Virginia
  • Publication number: 20240138770
    Abstract: Embodiments can relate to systems and methods for automatically detecting sensor compression in continuous glucose monitoring in real time. A system may include at least one sensor and at least one processor in communication with the at least one sensor. The at least one processor is programmed or configured to cause the processor to retrieve first measurement data including at least one time series of blood glucose (BG) measurements, the at least one time series being measured by the at least one sensor while not subject to compression; receive, from the at least one sensor, second measurement data including at least one BG measurement; determine a clearance value between BG measurements based on the first measurement data and the second measurement data; and generate a signal output indicating that the at least one sensor is subject to compression based on the clearance value between BG measurements exceeding a predefined threshold.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 2, 2024
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Boris P. KOVATCHEV, Chiara FABRIS, Marcela MOSCOSO-VASQUEZ
  • Publication number: 20240144446
    Abstract: Embodiments can relate to a system for producing a digital image by automatically correcting for scattering and/or absorption effects in an original digital image. The system can include a processor. The system can include memory containing a computer program that when executed will cause the processor to receive radiance spectra of a digital image, and execute a Gaussian machine learning model. The system can generate a reflectance parameter by predicting a ground reflectance value based on a Gaussian probability distribution of radiance spectra. The system can solve for a conversion coefficient based on the reflectance parameter. The system can produce an altered digital image by at least one or more of removing, filtering, and/or altering data for at least one pixel of a digital image based on the conversion coefficient.
    Type: Application
    Filed: October 26, 2023
    Publication date: May 2, 2024
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: William BASENER, Abigail BASENER
  • Publication number: 20240139415
    Abstract: Embodiments can relate to a system for automatically detecting sensor compression in continuous glucose monitoring including at least one sensor and at least one processor in communication with the at least one sensor, the at least one processor executing at least two machine learning models, wherein the at least one processor is programmed or configured to cause the processor to receive, from the at least one sensor, measurement data including at least one time series of blood glucose (BG) measurements measured by the at least one sensor, determine that the at least one time series of BG measurements is a candidate series including a compression artifact using a first machine learning model, and generate, using a second machine learning model, a signal output indicating that the at least one time series of BG measurements was obtained while the at least one sensor was subject to compression.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 2, 2024
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Boris P. KOVATCHEV, Benjamin J. LOBO
  • Publication number: 20240139354
    Abstract: Some embodiments relate to imageable radioisotopic microspheres. In some embodiments, the imageable microspheres are radiolabeled with imageable radioisotopes. In some embodiments, the imageable radioisotope is directly coupled to a surface of a substrate of the microsphere. In some embodiments, the imageable microspheres can be used as surrogate particles to predict the distribution of therapeutic microspheres comprising radiotherapeutic isotopes.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicants: Boston Scientific Medical Device Limited, University of Virginia Patent Foundation
    Inventors: James Radford Stone, Kiel Douglas Neumann, Matthew Robert Dreher
  • Patent number: 11972896
    Abstract: The present invention is directed to a compact inductor having the required (predetermined) inductance and current rating, further designed to avoid substantial heat generation by avoiding saturation, winding(s) possessing a low DC resistance and copper loss, and minimizing the required volume or profile in order to conserve circuit board real-estate. The compact inductor design of the present invention includes both enclosed core as well as enclosed winding type of inductor designs.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 30, 2024
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Khai Doan The Ngo, Han Cui
  • Patent number: 11970573
    Abstract: Bifuran-modified polyester, polyethylene-terephthalate-co (2,2?-bifuran-5,5?-dicarboxylate), prepared by esterifying or transesterifying a diacid component comprising from 2 to 10 mole percent 2,2?-bifuran-5,5?-dicarboxylate and a diol component with a catalyst compound comprising metal present in an amount of from about 10 to about 450 ppm and polycondensation to form the polyester wherein the polyester has an inherent viscosity of at least 0.5 g/dL, a glass transition temperature (Tg) of 82° C. or more, a semicrystalline melting peak (Tm) with ?Hf equal to or greater than 5 J/g on the second heating ramp, and melting temperature (Tm) between 229° C. and 246° C. Reinforced compositions and shaped articles comprising bifuran-modified polyethylene terephthalate and methods of their production are also disclosed.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: April 30, 2024
    Assignees: ExxonMobil Chemical Patents Inc., Virginia Tech Intellectual Properties, Inc.
    Inventors: Monica Lotz, S. Richard Turner, Hans Eliot Edling, Kapil Kandel, Michael Salciccioli, Stephen Cohn, Alan A. Galuska, Javier Guzman, Edward E. Paschke
  • Patent number: 11972630
    Abstract: Various examples are provided for distortion rectification and fingerprint crossmatching. In one example, a method includes selecting an electronic, perspective distorted fingerprint sample; and generating an unwarped fingerprint sample by rectifying perspective distortions from the perspective distorted fingerprint sample by application of an unwarping transformation. Parameters of the unwarping transformation can be determined by a deep convolutional neural network (DCNN) trained on a database comprising contactless fingerprint samples suffering from perspective distortions.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: April 30, 2024
    Assignee: WEST VIRGINIA UNIVERSITY
    Inventors: Nasser M. Nasrabadi, Jeremy M. Dawson, Ali Dabouei
  • Publication number: 20240136040
    Abstract: A structure, method, and computer program product for a diabetes control system provides, but is not limited thereto, the following: open-loop or closed-loop control of diabetes that adapts to individual physiologic characteristics and to the behavioral profile of each person. An exemplary aspect to this adaptation is biosystem (patient or subject) observation and modular control. Consequently, established is the fundamental architecture and the principal components for a modular system, which may include algorithmic observers of patients' behavior and metabolic state, as well as interacting control modules responsible for basal rate, insulin boluses, and hypoglycemia prevention.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 25, 2024
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATIN
    Inventors: Boris P. KOVATCHEV, Stephen D. PATEK, Marc D. BRETON
  • Publication number: 20240131473
    Abstract: Described in certain example embodiments herein are methods of isolating exosomes from a biological fluid, such as those containing caseins.
    Type: Application
    Filed: February 23, 2022
    Publication date: April 25, 2024
    Applicant: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Spencer MARSH, Kevin J. PRIDHAM, Linda Jane JOURDAN, Robert G. GOURDIE
  • Patent number: 11965810
    Abstract: An exemplary method and system is disclosed that facilitate the integration of multiplexed single-cell impedance cytometry in a high throughput format, which can be deployed upstream from microfluidic sample preparation and/or downstream to microfluidic cell separation. In exemplary method and system may employ impedance-based quantification of cell electrophysiology on the same microfluidic chip (i.e., “on-chip”) to provide distinguishing phenotypic information on the sample, without the need for additional sample handling, preparation or dilution steps as would be needed for other flow cytometry techniques.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: April 23, 2024
    Assignee: University of Virginia Patent Foundation
    Inventors: Nathan Swami, John McGrath, Walter Varhue, Carlos Honrado, Vahid Farmehini, Yi Liu
  • Patent number: 11964985
    Abstract: The invention provides methods of inhibiting the growth or metastasis of a cancer in a mammal by inhibiting a Ral GTPase in the mammal. The invention also provides small molecule inhibitors of Ral GTPases useful in the methods of the invention and pharmaceutical compositions containing the therapeutically effective compounds of the invention, and methods of using the same.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: April 23, 2024
    Assignees: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY CORPORATE., INDIANA UNIVERSITY RESEARCH AND TECHNOLOGY CORPORATION, UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Dan Theodorescu, Michael Fitzpatrick Wempe, David Ross, Samy Meroueh, Martin A. Schwartz, Phillip Reigan
  • Patent number: 11968765
    Abstract: The present disclosure describes devices and methods for improving the power efficiency and control of an induction heating system. In particular, the induction heating system includes a series resonant bridge inverter circuit and a control circuit. The inverter circuit includes one or more induction coils that are structured to inductively couple to the cookware to heat the cookware and a current sensor structured to sense a coil current signal across the one or more inductor coils. In particular, the current sensor is structured to generate a positive sensed voltage signal corresponding to a positive portion of the coil current signal and a negative sensed voltage signal corresponding to a negative portion of the coil current. The control signal is structured to control switching of a first and a second set of switches based on the positive and negative sensed voltage signals.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: April 23, 2024
    Assignees: The Vollrath Company, L.L.C., Virginia Tech Intellectual Properties, Inc.
    Inventors: Jeremiah Kopiness, Andrew Amrhein, Jong-Woo Kim, Moonhyun Lee, Jih-Sheng Lai
  • Patent number: 11966816
    Abstract: Aspects of generating error-resistant quantum control pulses from geometrical curves are described. In some embodiments, a closed space curve is parameterized for a target gate operation of a quantum computing device. The closed space curve corresponds to an evolution operator of a time-dependent Schrödinger equation associated with the target gate operation. A control field definition is identified for the target gate operation based at least in part on a geometrical analysis of the evolution operator of the time-dependent Schrödinger equation. The target gate operation is implemented for the quantum computing device based on the control field definition.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: April 23, 2024
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Edwin Barnes, Junkai Zeng
  • Publication number: 20240126819
    Abstract: Embodiments of methods and/or systems for sorting digital information are disclosed. In one particular embodiment, samples of a portion of digital information are associated with prime numerals. Such digital information may then be sorted based upon combinations of such digital information. In another example embodiment, a portion or sub-portion of a collection of digital information is converted to at least one sorting value. It should be understood, however, that these are merely example implementations and that claimed subject matter is not limited in this respect.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Applicant: Robert T. and Virginia T. Jenkins as Trustees of the Jenkins Family Trust Dated Feb. 8, 2002
    Inventors: Richard Crandall, Mark Gesley, Brandon McPhail
  • Publication number: 20240127967
    Abstract: Methods of modeling the in vivo efficacy of drug combinations for the treatment or prevention of viral infection are described. The described methods combine data for single drugs and drug combinations from pharmacokinetic, pharmacodynamic, and viral dynamics models under a series of estimated in vivo drug potencies to provide predictions of the in vivo effects of the drug combinations. These predictions can be used to more accurately select drugs and drug treatment regimens that can be successful in controlling viral infection in animal studies, clinical trials and in medical or veterinary interventions. Also described is a method of treating or preventing filovirus infections using combinations of orally available drugs based on predictions from the modeling methods.
    Type: Application
    Filed: February 9, 2022
    Publication date: April 18, 2024
    Applicants: University of Virginia Patent Foundation, Fred Hutchinson Cancer Research Center
    Inventors: Judith M. White, Shuang Xu, Joshua T. Schiffer, Gene G. Olinger, Courtney L. Finch, Julie Dyall, Stephen J. Polyak, Lisa Johansen
  • Patent number: 11957664
    Abstract: Compositions and methods are provided that are useful for diagnosing, treating, and monitoring alcohol dependence and disorders, susceptibility to alcohol dependence disorders, as well as drug related dependence and disorders. The methods include treating patients with an antagonist of the serotonin receptor 5-HT3 for such disorders, wherein the patient's serotonin transporter gene SLC6A4 is known to have particular genotypes.
    Type: Grant
    Filed: March 23, 2023
    Date of Patent: April 16, 2024
    Assignee: University of Virginia Patent Foundation
    Inventor: Bankole A. Johnson
  • Patent number: 11959858
    Abstract: Chronic Kidney Disease (CKD) is characterized by the progressive loss of renal function which eventually leads to End Stage Renal Disease (ESRD). CKD affects roughly 30 million Americans, costs billions of dollars in healthcare spending annually, and leaves thousands of patients reliant on burdensome dialysis treatments while waiting for a transplant. Fortunately, CKD may be controllable if diagnosed early in the disease progression. RAMETRIX™ is a novel public health screening technology for early diagnosis and detection of CKD. This technology uses Raman spectroscopy and chemometrics to analyze the molecular composition of urine and other biological fluids. RAMETRIX™ is a fast, non-invasive, accurate, and inexpensive diagnostic tool that can revolutionize the way healthcare providers detect and treat CKD. The RAMETRIX™ AutoScanner is a system enabling more efficient sample processing in large-scale settings such as hospitals and medical laboratories.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: April 16, 2024
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: John L. Robertson, Ryan Senger
  • Patent number: 11957682
    Abstract: In one aspect, the disclosure relates to compounds useful to regulate, limit, or inhibit the expression of AVIL (advillin), methods of making same, pharmaceutical compositions comprising same, and methods of treating disorders associated with AVIL dysregulation using same. In aspects, the disclosed compounds, compositions and methods are useful for treating disorders or diseases in which the regulation, limitation, or inhibition of the expression of AVIL can be clinically useful, such as, for example, the treatment of cancer. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 16, 2024
    Assignee: University of Virginia Patent Foundation
    Inventors: Hui Li, Zhongqiu Xie
  • Publication number: 20240121620
    Abstract: Embodiments relate to a dynamic spectrum access (DSA) system including a DSA transmitter configured to generate a complex signal for a secondary communication system, the complex signal being within a communication band A that is equal to or falls within a communication band B of a primary communication system. The complex signal includes a first signal and a second signal that is a repeat of the first signal. The power of the complex signal received at the secondary communication receiver is greater than the noise floor of the secondary communication system, but is equal to or less than the interference power from the primary communication. The DSA system includes a DSA receiver including a plurality of DSA antennas and a DSA signal processing module, the DSA signal processing module configured to perform canonical correlation analysis (CCA) on the complex signal.
    Type: Application
    Filed: December 10, 2021
    Publication date: April 11, 2024
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Mohamed Salaheldeen IBRAHIM, Nikolaos Dimitrios Sidiropoulos
  • Publication number: 20240117358
    Abstract: Provided herein is a previously unannotated IncRNA lying within exon six and 3?UTR of the LCK gene, labeled “HULLK” for Hormone-Upregulated IncRNA within LCK. HULLK is a novel IncRNA situated within the LCK gene that can serve as an oncogene in PCa. Accordingly, provided are methods and compositions for diagnosing and treating prostate cancer based on HULLK that regulates prostate cancer cell growth.
    Type: Application
    Filed: October 16, 2023
    Publication date: April 11, 2024
    Applicant: University of Virginia Patent Foundation
    Inventor: Daniel G. Gioeli