Patents Assigned to Virginia Tech Intellectual Properties
  • Patent number: 11529760
    Abstract: A method for manufacturing a three dimensional object includes steps of: providing a digital description of the object as a set of voxels; sequentially creating an actual set of voxels corresponding to the digital set of voxels. At least one voxel comprises a polymer derived from: polyol and an ionic monomer. The calculated charge density of the resulting polymer is 0.01 to 0.7 mEq/g. A three-dimensional object having at least one voxel. The at least one voxel including a polymer derived from: a polyol and an ionic monomer, and the calculated charge density of the resulting polymer is 0.01 to 0.7 mEq/g.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: December 20, 2022
    Assignees: The Procter & Gamble Company, Virginia Tech Intellectual Properties Inc.
    Inventors: Travis Kyle Hodgdon, Timothy E Long, Allison M Pekkanen, Abby Rebecca Whittington, Christopher Bryant Williams, Callie Elizabeth Zawaski, Douglas M Graham, Corey J Kenneally, Freddy Arthur Barnabas, Andre Stevenson
  • Patent number: 11525034
    Abstract: Described herein are water desalination membranes and methods of desalinating water. Sulfonated poly(arylene ether) polymers are also disclosed, including those comprising one or more sulfonate groups at various points along the polymer chain. The polymers may be used as at least a portion of a water desalination membrane. The polymers described herein are useful for preventing transport of aqueous ionic species (e.g., Na+ and Cl?) across a membrane made from the polymers while allowing water to pass. Chlorine-stable polymers are described, as well as polymers exhibiting good performance for rejecting monovalent cations in the presence of polyvalent cations.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: December 13, 2022
    Assignees: Board of Regents, The University of Texas System, Virginia Tech Intellectual Properties, Inc.
    Inventors: Judy S. Riffle, Ozma R. Lane, Amin Daryaei, Shreya Roy-Choudhury, Benny D. Freeman, Eui Soung Jang, Gurtej S. Narang, John J. Lesko, Trevor Schumacher
  • Patent number: 11515807
    Abstract: Aspects are described for line frequency commutated voltage source converters for multiphase modular multilevel converters. A voltage source converter (VSC) capacitor voltage of a multiphase VSC of a multiphase power converter can be identified. The multiphase VSC can include a half-bridge circuit for each phase of the multiphase power converter. A circuit parameter can be identified and utilized to determine an arm voltage of an arm of a branch of the multiphase converter. Switch control signals can be generated to insert or bypass the VSC capacitor for the arm of the branch of the multiphase converter device, based at least in part on a comparison between the arm voltage and the VSC capacitor voltage.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: November 29, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jian Liu, Dong Dong
  • Patent number: 11466437
    Abstract: Described herein are fog harvesters having a vertical wire array and systems thereof. The fog harvesters described herein can be used to harvest liquid from the air, such as from fog. The fog harvesters can, in some aspects, have improved performance in one or more aspects as compared to fog harvesters having a mesh design.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 11, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jonathan B. Boreyko, Brook Kennedy, Weiwei Shi, Joshua Tulkoff, Mark Anderson
  • Patent number: 11468317
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a storage medium, for processing radio signals. In once aspect, a system is disclosed that includes a processor and a storage device storing computer code that includes operations. The operations may include obtaining first output data generated by a first neural network based on the first neural network processing a received radio signal, receiving, by a signal transformer, a second set of input data that includes (i) the received radio signal and (ii) the first output data, generating, by the signal transformer, data representing a transformed radio signal by applying one or more transforms to the received radio signal, providing the data representing the transformed radio signal to a second neural network, obtaining second output data generated by the second neural network, and determining based on the second output data a set of information describing the received radio signal.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: October 11, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Timothy James O'Shea
  • Patent number: 11453873
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John H. Rossmeisl, John L. Robertson, Robert E. Neal, II
  • Patent number: 11433601
    Abstract: Photocurable colloid binders are provided that overcome deficiencies associated with 3D printing of high molecular weight polymers via VAT photopolymerization. Methods of additive manufacturing are also provided using the binders. The approaches described herein effectively decouple the viscosity-molecular weight relationship by synthesizing and processing photo-reactive aqueous colloids that are sequestered within a photocrosslinkable scaffold. Sequestering polymers within discrete internal phases prevents inter-particle entanglement of the polymer chains, thus ensuring low viscosity. VP of polymer colloids results in a solid green body embedded with high molecular weight polymer particles. A post-processing heated drying step allows the polymers to coalesce and further entangle, forming a semi-interpenetrating network with mechanical performance of the high molecular weight material. The resins can further include inorganic particles such as silica and other ceramics, metal particles, and the like.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: September 6, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Timothy E. Long, Viswanath Meenakshisundaram, Philip J. Scott, Christopher B. Williams
  • Patent number: 11423301
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication over radio frequency (RF) channels. One method includes: determining an encoder and a decoder, at least one of which is configured to implement an encoding or decoding that is based on at least one of an encoder machine-learning network or a decoder machine-learning network that has been trained to encode or decode information over a communication channel; determining first information; using the encoder to process the first information and generate a first RF signal; transmitting, by at least one transmitter, the first RF signal through the communication channel; receiving, by at least one receiver, a second RF signal that represents the first RF signal altered by transmission through the communication channel; and using the decoder to process the second RF signal and generate second information as a reconstruction of the first information.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: August 23, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Timothy James O'Shea
  • Publication number: 20220249366
    Abstract: The invention relates generally to methods of using a thiol-Michael addition hydrogel for providing intracavitary brachytherapy and/or displacing tissue and organs. The thiol-Michael addition hydrogel may be used as a packing material and an attenuation material for intracavitary brachytherapy applications. The invention also relates generally to a brachytherapy applicator, which may be used in conjunction with the thiol-Michael addition hydrogel and methods thereof. The invention also relates to a positioning device system for providing intracavitary brachytherapy treatment and a kit thereof.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 11, 2022
    Applicants: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Timothy Norman SHOWALTER, Timothy E. LONG, Nicholas MOON
  • Patent number: 11406820
    Abstract: A system and method for selectively treating aberrant cells such as cancer cells through administration of a train of electrical pulses is described. The pulse length and delay between successive pulses is optimized to produce effects on intracellular membrane potentials. Therapies based on the system and method produce two treatment zones: an ablation zone surrounding the electrodes within which aberrant cells are non-selectively killed and a selective treatment zone surrounding the ablation zone within which target cells are selectively killed through effects on intracellular membrane potentials. As a result, infiltrating tumor cells within a tumor margin can be effectively treated while sparing healthy tissue. The system and method are useful for treating various cancers in which solid tumors form and have a chance of recurrence from microscopic disease surrounding the tumor.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 9, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Michael B. Sano, Christopher B. Arena, Scott S. Verbridge, Rafael V. Davalos
  • Patent number: 11404967
    Abstract: Three-phase interleaved LLC and CLLC resonant converters, with integrated magnetics, are described. In various examples, the primary sides of the phases in the converters rely upon a half-bridge configuration and include resonant networks coupled to each other in delta-connected or common Y-node configurations. The secondary sides of the phases can rely upon a full-bridge configurations and are coupled in parallel. In one example, the transformers of the phases in the converters are integrated into one magnetic core. By changing the interleaving structure between the primary and secondary windings in the transformers, resonant inductors of the phases can also be integrated into the same magnetic core. A multi-layer PCB can be used as the windings for the integrated magnetics.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 2, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Chao Fei, Bin Li, Fred C. Lee, Qiang Li
  • Patent number: 11382681
    Abstract: The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. Methods, devices, and systems for in vivo treatment of cell proliferative disorders are provided. In embodiments, the methods comprise the delivery of high-frequency bursts of bipolar pulses to achieve the desired modality of cell death. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale. In embodiments, the methods rely on conventional electroporation with adjuvant drugs or irreversible electroporation to cause cell death in treated tumors. The invention can be used to treat solid tumors, such as brain tumors.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: July 12, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Christopher B. Arena, Rafael V. Davalos, Michael B. Sano
  • Patent number: 11384161
    Abstract: A method for the synthesis of alkyl ?-carboxy(hydroxyethyl) polysaccharides is described. The method includes methylating or ethylating a polysaccharide or providing a methylated or ethylated polysaccharide, hydroxyethylating the methylated or ethylated polysaccharide, and oxidizing the hydroxyethylated polysaccharide to form the ?-carboxy(hydroxyethyl) polysaccharide. A method for the synthesis of oxidized polysaccharides is also described. The method includes hydroxypropylating a polysaccharide and oxidizing the hydroxypropylated polysaccharides. A method for the production of a solid capable of forming a hydrogel is also described. The method includes combining a first solution comprising an oxidized oligo(hydroxypropyl) polysaccharide bearing one or more ketone groups with a second solution comprising an amine substituted polysaccharide to form a third solution, and removing solvent from the third solution to form the solid, or adding an additional solvent to the third solution to precipitate the solid.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: July 12, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Kevin Edgar, Brittany L. B. Nichols, Junyi Chen, Charles Frazier, Ann Norris
  • Patent number: 11376769
    Abstract: Described herein are expandable foaming molds. The foaming molds described herein permit mold boundaries to expand along with the expanding polymer and thereby conform to the foaming dynamics of the polymer material. By modifying the temperature and pressure applied to the mold devices described herein, the properties of the resulting foamed polymer can be fine-tuned for specific applications.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: July 5, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Erdogan Kiran
  • Patent number: 11381286
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication over multi-input-multi-output (MIMO) channels.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: July 5, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Timothy James O'Shea, Tugba Erpek
  • Publication number: 20220195980
    Abstract: The present invention relates to airfoils having surface treatments to reduce trailing edge noise. The surface treatment is designed to reduce trailing edge noise by modifying the boundary layer turbulence as it approaches the trailing edge. The surface treatment accomplishes its function by breaking up spanwise-oriented turbulence approaching the trailing edge, thereby reducing the spanwise correlation lengthscales; deflecting the boundary layer turbulence away from the edge; and/or creating spanwise vortices or instability waves to reduce the turbulence-edge interaction.
    Type: Application
    Filed: January 8, 2022
    Publication date: June 23, 2022
    Applicant: Virginia Tech Intellectual Properties, Inc.
    Inventors: William Nathan Alexander, William J. Devenport, Ian A. Clark, Justin W. Jaworski, Stewart Glegg, Nigel Peake, Conor Daly
  • Patent number: 11368103
    Abstract: Aspects of hybrid-current-mode switching-cycle control are described. In one embodiment, a peak current mode is selected to control a switching power cell. The switching power cell is in an arm of a phase leg of a modular multilevel converter. The phase leg includes an upper arm and a lower arm, and the switching power cell includes a capacitor and at least one switch. At least one switch control signal switches the switching power cell according to a peak current mode based on at least one arm current boundary crossing identified for the arm.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: June 21, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jun Wang, Rolando Burgos, Dushan Boroyevich
  • Patent number: 11335649
    Abstract: Various embodiments of laminated planar bus structures that minimize electromagnetic interference (EMI) and parasitic inductance are described. In one embodiment, a laminated planar bus structure may include a plurality of stacked conductive layers and a plurality of stacked insulation layers. The plurality of stacked conductive layers may include positive and negative conductive layers, and conductive ground layers stacked as outer layers as to enclose vertically the positive and the negative conductive layers. In another embodiment, the laminated planar bus structure may include a middle ground layer stacked in between the positive and the negative conductive layers to provide additional reduction in electric field strength. A laminated planar bus structure that is integrated with other power electronics components is also presented.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: May 17, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jun Wang, Rolando Burgos, Dushan Boroyevich, Joshua Stewart, Yue Xu
  • Patent number: 11331676
    Abstract: Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: May 17, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Roe-Hoan Yoon, Mert Kerem Eraydin
  • Patent number: 11334807
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learning estimation networks in a communications system. One of the methods includes: processing first information with ground truth information to generate a first RF signal by altering the first information by channel impairment having at least one channel effect, using a receiver to process the first RF signal to generate second information, training a machine-learning estimation network based on a network architecture, the second information, and the ground truth information, receiving by the receiver a second RF signal transmitted through a communication channel including the at least one channel effect, inferring by the trained estimation network the receiver to estimate an offset of the second RF signal caused by the at least one channel effect, and correcting the offset of the RF signal with the estimated offset to obtain a recovered RF signal.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: May 17, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Timothy James O'Shea, Kiran Karra, T. Charles Clancy