Patents Assigned to Virginia Tech
  • Patent number: 11620415
    Abstract: The present invention provides a process for making a flow conditioning device that transforms an input flow into a desired output flow. The process includes the steps of inputting into a computer program a set of design constraints representative of the input flow and the output flow. The computer program generates a design representative of a flow-conditioning device that transforms the input flow into the output flow. The process then provides the output design to an additive manufacturing or other suitable production system adapted to form a solid representation of the flow-conditioning device.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 4, 2023
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Anthony M. Ferrar, William C. Schneck, Walter F. O'Brien, Kevin M. Hoopes, Justin Bailey
  • Patent number: 11618832
    Abstract: Polymer resins for the vat photopolymerization of thermoplastics are provided, in particular for the vat photopolymerization of thermoplastics with exception thermal stability and mechanical properties. In some aspects, the polymer resins are prepared by ring opening of an aromatic dianhydride with an alcohol containing an acrylate or methacrylate to produce a photocrosslinkable diacid monomer; conversion of the photocrosslinkable diacid monomer to a photocrosslinkable diacyl chloride; and polymerization of the photocrosslinkable diacyl chloride with an aromatic diamine to produce a photocrosslinkable precursor polymer. Upon crosslinking and drying, a thermal imidization can yield aromatic polyimide polymers with high yield and with micron-scale structural resolution.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 4, 2023
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Maruti Hegde, Timothy E. Long, Viswanath Meenakshisundaram, Christopher B. Williams, Nicholas Chartrain
  • Patent number: 11607271
    Abstract: The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 21, 2023
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Paulo A. Garcia, Rafael V. Davalos
  • Patent number: 11611289
    Abstract: Aspects are described for hybrid modular multilevel converters that include half-bridge submodules. In some embodiments, a hybrid modular multilevel converter can include a direct current (DC) bus and an alternating current (AC) node. A first arm of the hybrid modular multilevel converter includes a first submodule chain link and a first arm inductor and a second arm includes a second submodule chain link and a second arm inductor. A capacitor connects between a first side of the first arm and a first side of the second arm.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: March 21, 2023
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jian Liu, Dong Dong, Rolando Burgos
  • Patent number: 11607537
    Abstract: This disclosure describes the methods, devices, and systems of treating diseased tissue with integrated nanosecond pulse irreversible electroporation. Methods and systems as disclosed provide MRI compatible shielded electrodes and electrode leads to prevent emanating radiofrequency noise and improve image quality, disconnecting the electrode from the cable linkage to the pulse generator reduce electromagnetic interference and image artifacts, placing electrodes strategically within a guide cannula to minimize distortion from heterogeneities or maximize ablation within the tissue, utilizing conductive fluids, innate or external, such as cerebral spinal fluid or grounding pads to provide a pathway for current return, and for timing of the electrical waveforms with inherent brain electrical activity.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: March 21, 2023
    Assignees: Virginia Tech Intellectual Properties, Inc., VoltMed, Inc.
    Inventors: Eduardo Latouche, Samuel Lesko, Lucy Epshteyn, Christopher B. Arena, John H. Rossmeisl, Jr., Melvin Lorenzo, Rafael Davalos
  • Publication number: 20230084516
    Abstract: A method of making an article comprising one or more layers of plasmonic nanoparticles located between opposing layers of dielectric materials and an article comprising one or more layers of plasmonic nanoparticles located between opposing layers of dielectric materials.
    Type: Application
    Filed: August 17, 2022
    Publication date: March 16, 2023
    Applicant: Virginia Tech Intellectual Properties, Inc.
    Inventors: Guoliang Liu, Assad U. Khan
  • Patent number: 11598627
    Abstract: Various methods, systems and apparatus are provided for imaging and sensing using interferometry. In one example, a system includes an interferometer; a light source that can provide light to the interferometer at multiple wavelengths (?i); and optical path delay (OPD) modifying optics that can enhance contrast in an interferometer output associated with a sample. The light can be directed to the sample by optics of the interferometer. The interferometer output can be captured by a detector (e.g., a camera) at each of the multiple wavelengths (?i). In another example, an apparatus includes an add-on unit containing OPD that can enhance contrast in an interferometer output associated with a sample illuminated by light at a defined wavelength (?i). A detector can be attached to the add-on unit to record the interferometer output at the defined wavelength (?i).
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 7, 2023
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventor: Yizheng Zhu
  • Patent number: 11588400
    Abstract: Aspects of series resonator DC-to-DC converters are described. A series resonator DC-to-DC converter can include a first half-bridge circuit comprising a first high-side switch and a first low-side switch, a second half-bridge circuit comprising a second high-side switch and a second low-side switch, and a resonator in series between the first high-side switch and the first low-side switch. The circuit design and switching controller can be relied upon to impart soft-switching.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: February 21, 2023
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Cong Tu, Khai Doan The Ngo, Ting Ge, Rengang Chen
  • Patent number: 11552549
    Abstract: A voltage balancing circuit for use in a power converter is described. In one example, a power converter includes series-connected switching transistors for power conversion, and a voltage balancing control loop. The voltage balancing control loop includes a measurement circuit electrically coupled to a transistor in the pair of series-connected switching transistors. The measurement circuit is electrically coupled to measure a body voltage reference of the transistor. The voltage balancing control loop also includes a balancing circuit configured to generate a balancing pulse signal for adjusting a voltage across the transistor using the body voltage reference, and a circuit configured to combine the balancing pulse signal with a gate drive pulse signal for the transistor, to form a balanced gate drive pulse signal for the transistor. The balanced gate drive pulse signal helps to equalize the body diode voltages of the series-connected switching transistors, particularly during “off” periods.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: January 10, 2023
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Xiang Lin, Dong Dong, Rolando Burgos
  • Patent number: 11545900
    Abstract: Aspects of an efficient, wide voltage range, power converter system are described. In one example, a power converter system includes a first power converter, a second power converter, and a controller for the power converter. An input of the first power converter and an input of the second power converter are connected in series across an input voltage for the power converter system, and an output of the first power converter and an output of the second power converter are connected in parallel at an output of the power converter system. The controller is configured to regulate the second power converter and to determine whether or not to regulate the first power converter based on the input voltage for the power converter system and an output voltage of the power converter system, among other factors, for greater efficiency of the power converter system over wider input and output voltage ranges.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: January 3, 2023
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Mohamed Ahmed, Fred C. Lee, Qiang Li
  • Patent number: 11534122
    Abstract: The present invention provides stationary CT architecture for imaging at a faster temporal resolution and lower radiation dose. In embodiments, the architecture features stationary distributed x-ray sources and rotating x-ray detectors. Provided is a stationary source computed tomography (CT) architecture comprising: a detector disposed on a rotatable gantry; an x-ray source disposed on a fixed ring; wherein the detector is disposed on the gantry in a manner such that the detector is capable of rotating around a subject and of receiving a signal from the x-ray source. Embodiments of the invention include a CT-MRI scanner comprising the stationary CT architecture.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: December 27, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Ge Wang, Guohua Cao
  • Patent number: 11529760
    Abstract: A method for manufacturing a three dimensional object includes steps of: providing a digital description of the object as a set of voxels; sequentially creating an actual set of voxels corresponding to the digital set of voxels. At least one voxel comprises a polymer derived from: polyol and an ionic monomer. The calculated charge density of the resulting polymer is 0.01 to 0.7 mEq/g. A three-dimensional object having at least one voxel. The at least one voxel including a polymer derived from: a polyol and an ionic monomer, and the calculated charge density of the resulting polymer is 0.01 to 0.7 mEq/g.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: December 20, 2022
    Assignees: The Procter & Gamble Company, Virginia Tech Intellectual Properties Inc.
    Inventors: Travis Kyle Hodgdon, Timothy E Long, Allison M Pekkanen, Abby Rebecca Whittington, Christopher Bryant Williams, Callie Elizabeth Zawaski, Douglas M Graham, Corey J Kenneally, Freddy Arthur Barnabas, Andre Stevenson
  • Patent number: 11525034
    Abstract: Described herein are water desalination membranes and methods of desalinating water. Sulfonated poly(arylene ether) polymers are also disclosed, including those comprising one or more sulfonate groups at various points along the polymer chain. The polymers may be used as at least a portion of a water desalination membrane. The polymers described herein are useful for preventing transport of aqueous ionic species (e.g., Na+ and Cl?) across a membrane made from the polymers while allowing water to pass. Chlorine-stable polymers are described, as well as polymers exhibiting good performance for rejecting monovalent cations in the presence of polyvalent cations.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: December 13, 2022
    Assignees: Board of Regents, The University of Texas System, Virginia Tech Intellectual Properties, Inc.
    Inventors: Judy S. Riffle, Ozma R. Lane, Amin Daryaei, Shreya Roy-Choudhury, Benny D. Freeman, Eui Soung Jang, Gurtej S. Narang, John J. Lesko, Trevor Schumacher
  • Patent number: 11515807
    Abstract: Aspects are described for line frequency commutated voltage source converters for multiphase modular multilevel converters. A voltage source converter (VSC) capacitor voltage of a multiphase VSC of a multiphase power converter can be identified. The multiphase VSC can include a half-bridge circuit for each phase of the multiphase power converter. A circuit parameter can be identified and utilized to determine an arm voltage of an arm of a branch of the multiphase converter. Switch control signals can be generated to insert or bypass the VSC capacitor for the arm of the branch of the multiphase converter device, based at least in part on a comparison between the arm voltage and the VSC capacitor voltage.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: November 29, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jian Liu, Dong Dong
  • Patent number: 11466437
    Abstract: Described herein are fog harvesters having a vertical wire array and systems thereof. The fog harvesters described herein can be used to harvest liquid from the air, such as from fog. The fog harvesters can, in some aspects, have improved performance in one or more aspects as compared to fog harvesters having a mesh design.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 11, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Jonathan B. Boreyko, Brook Kennedy, Weiwei Shi, Joshua Tulkoff, Mark Anderson
  • Patent number: 11468317
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a storage medium, for processing radio signals. In once aspect, a system is disclosed that includes a processor and a storage device storing computer code that includes operations. The operations may include obtaining first output data generated by a first neural network based on the first neural network processing a received radio signal, receiving, by a signal transformer, a second set of input data that includes (i) the received radio signal and (ii) the first output data, generating, by the signal transformer, data representing a transformed radio signal by applying one or more transforms to the received radio signal, providing the data representing the transformed radio signal to a second neural network, obtaining second output data generated by the second neural network, and determining based on the second output data a set of information describing the received radio signal.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: October 11, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Timothy James O'Shea
  • Patent number: 11453873
    Abstract: The present invention provides systems, methods, and devices for electroporation-based therapies (EBTs). Embodiments provide patient-specific treatment protocols derived by the numerical modeling of 3D reconstructions of target tissue from images taken of the tissue, and optionally accounting for one or more of physical constraints or dynamic tissue properties. The present invention further relates to systems, methods, and devices for delivering bipolar electric pulses for irreversible electroporation exhibiting reduced or no damage to tissue typically associated with an EBT-induced excessive charge delivered to the tissue.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Paulo A. Garcia, John H. Rossmeisl, John L. Robertson, Robert E. Neal, II
  • Patent number: 11433601
    Abstract: Photocurable colloid binders are provided that overcome deficiencies associated with 3D printing of high molecular weight polymers via VAT photopolymerization. Methods of additive manufacturing are also provided using the binders. The approaches described herein effectively decouple the viscosity-molecular weight relationship by synthesizing and processing photo-reactive aqueous colloids that are sequestered within a photocrosslinkable scaffold. Sequestering polymers within discrete internal phases prevents inter-particle entanglement of the polymer chains, thus ensuring low viscosity. VP of polymer colloids results in a solid green body embedded with high molecular weight polymer particles. A post-processing heated drying step allows the polymers to coalesce and further entangle, forming a semi-interpenetrating network with mechanical performance of the high molecular weight material. The resins can further include inorganic particles such as silica and other ceramics, metal particles, and the like.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: September 6, 2022
    Assignee: VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Timothy E. Long, Viswanath Meenakshisundaram, Philip J. Scott, Christopher B. Williams
  • Patent number: 11423301
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication over radio frequency (RF) channels. One method includes: determining an encoder and a decoder, at least one of which is configured to implement an encoding or decoding that is based on at least one of an encoder machine-learning network or a decoder machine-learning network that has been trained to encode or decode information over a communication channel; determining first information; using the encoder to process the first information and generate a first RF signal; transmitting, by at least one transmitter, the first RF signal through the communication channel; receiving, by at least one receiver, a second RF signal that represents the first RF signal altered by transmission through the communication channel; and using the decoder to process the second RF signal and generate second information as a reconstruction of the first information.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: August 23, 2022
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventor: Timothy James O'Shea
  • Publication number: 20220249366
    Abstract: The invention relates generally to methods of using a thiol-Michael addition hydrogel for providing intracavitary brachytherapy and/or displacing tissue and organs. The thiol-Michael addition hydrogel may be used as a packing material and an attenuation material for intracavitary brachytherapy applications. The invention also relates generally to a brachytherapy applicator, which may be used in conjunction with the thiol-Michael addition hydrogel and methods thereof. The invention also relates to a positioning device system for providing intracavitary brachytherapy treatment and a kit thereof.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 11, 2022
    Applicants: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, VIRGINIA TECH INTELLECTUAL PROPERTIES, INC.
    Inventors: Timothy Norman SHOWALTER, Timothy E. LONG, Nicholas MOON