Patents Assigned to W. R. Grace & Co.-Conn.
  • Publication number: 20190247818
    Abstract: The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent, and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 15, 2019
    Applicant: W. R. Grace & Co.-Conn.
    Inventor: Linfeng Chen
  • Patent number: 10358505
    Abstract: Disclosed are catalyst compositions having an internal electron donor which includes a 3,6-di-substituted-1,2-phenylene aromatic diester. Ziegler-Natta catalyst compositions containing the present catalyst compositions exhibit very high hydrogen response, high activity, high selectivity and produce propylene-based olefins with high melt flow rate.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 23, 2019
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Linfeng Chen, Tak W. Leung, Tao Tao, Kuanqiang Gao
  • Patent number: 10336840
    Abstract: A composition is provided which comprises a propylene ethylene random copolymer having a melt flow rate (MFR) (as determined according to ASTM D1238, 230° C., 2.16 Kg) of less than 1 g/10 min, a xylene solubles content of less than 7% by weight, an ethylene content of from 3 to 5 percent by weight of the copolymer, and a value equal to or greater than 92 for the product of the Koenig B value times the % mm triads measured on the xylene insoluble fraction of the random copolymer obtained by the wet method. Pipes made from the composition demonstrate improved pressure endurance.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: July 2, 2019
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Chai-Jing Chou, Daniel W. Baugh, III, John Kaarto, Jan W. Van Egmond, Jeffrey D. Goad, William G. Sheard
  • Publication number: 20190184375
    Abstract: A process for preparing a peptized alumina having increased solids and acid contents and a decreased water content. The process comprising mixing a boehmite or pseudoboehmite alumina and acid with a high intensity, high energy mixer at a ratio of 0.16 to 0.65 moles acid/moles alumina for a time period sufficient to form a substantially free-flowing solid particulate having a solids content of 45 to 65 wt %. When used in catalyst manufacture, peptized alumina produced by the process provides an increased rate in catalyst production and decreased costs due to high solids concentration and the presence of less water to be evaporated.
    Type: Application
    Filed: July 25, 2017
    Publication date: June 20, 2019
    Applicant: W.R. GRACE & CO.- CONN.
    Inventors: Udayshankar Singh, Sundaram Krishnamoorthy, Michael Scott Ziebarth, Wu-Cheng Cheng
  • Patent number: 10323058
    Abstract: Provided are crystalline forms of nicotinamide riboside, including a Form I of nicotinamide riboside chloride according to formula (I). Also disclosed are pharmaceutical compositions comprising the crystalline Form I of nicotinamide riboside chloride, and methods of producing such pharmaceutical compositions. In other aspects, the present disclosure pertains to methods comprising administering to a subject the crystalline Form I of nicotinamide riboside chloride. The present disclosure also provides methods of preparing the crystalline Form I of nicotinamide riboside chloride. Also provided are a crystalline Form I of nicotinamide riboside chloride that is prepared according to any of the disclosed methods for preparing the crystalline Form I.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: June 18, 2019
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Erik C. Carlson, Michael C. Standen, Westin M. Morrill
  • Patent number: 10322394
    Abstract: The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: June 18, 2019
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Linfeng Chen
  • Patent number: 10273321
    Abstract: Solid catalyst components for use in olefin polymerization, olefin polymerization catalyst systems containing the solid catalyst components, methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing and copolymerizing olefins involving the use of the catalyst systems. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 30, 2019
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Michael Donald Spencer
  • Publication number: 20190091667
    Abstract: A process for increasing the overall yield of pyridine or its alkyl pyridine derivatives during a base synthesis reaction is disclosed. The process comprises reacting a C2 to C5 aldehyde, a C3 to C5 ketone or a combination thereof, with ammonia and, optionally, formaldehyde, in the gas phase and in the presence of an effective amount of a particulate catalyst comprising a zeolite, zinc, a binder, and clay and optionally a matrix, wherein the catalyst has a L/B ratio of about 1.5 to about 4.0. Preferably, the zeolite is ZSM-5. A process for enhancing the catalytic activity of a zinc and zeolite containing catalyst to increase the overall yield of pyridine and/or its derivatives during a base synthesis reaction is also disclosed.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 28, 2019
    Applicant: W. R. GRACE & CO.-CONN.
    Inventor: Dorai RAMPRASAD
  • Patent number: 10221264
    Abstract: This invention provides activator precursor compositions and activator compositions. The activator precursor compositions are formed from a support material, a linking compound, and polyfunctional compounds having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. The activator compositions are formed from a support material, a linking compound, an aluminoxane, and a polyfunctional compound having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. Also provided are catalyst compositions, processes for forming catalyst compositions, and polymerization processes utilizing the catalyst compositions of this invention.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 5, 2019
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Steven P. Diefenbach, Min Li, Matthew Grant Thorn, Lubin Luo
  • Patent number: 10207238
    Abstract: The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent, and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: February 19, 2019
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Linfeng Chen
  • Patent number: 10189872
    Abstract: Provided are crystalline forms of nicotinamide riboside, including a Form II of nicotinamide riboside chloride: nicotinamide riboside chloride. Also disclosed are pharmaceutical compositions comprising the crystalline Form II of nicotinamide riboside chloride, and methods of producing such pharmaceutical compositions. In other aspects, the present disclosure pertains to methods comprising administering to a subject the crystalline Form II of nicotinamide riboside chloride. The present disclosure also provides methods of preparing the crystalline Form II of nicotinamide riboside chloride. Also provided are a crystalline Form II of nicotinamide riboside chloride that is prepared according to any of the disclosed methods for preparing the crystalline Form II.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: January 29, 2019
    Assignee: W. R. Grace & Co.-Conn
    Inventors: Erik C. Carlson, Jose Osuna
  • Patent number: 10184085
    Abstract: A method for deoxygenating renewable oils comprised of natural oils or greases or derivatives thereof containing triglycerides or free fatty acids includes the steps of: providing a catalyst comprising a support predominantly comprised of alumina with metal compounds provided on the support based on Mo and at least one selected from the group consisting of Ni and Co, and at least one selected from the group consisting of Cu and Cr, and contacting the renewable oils with the catalyst under conditions sufficient to deoxygenate the renewable oils.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: January 22, 2019
    Assignee: W. R. GRACE & CO.-CONN
    Inventors: Sundaram Krishnamoorthy, Stephen Raymond Schmidt
  • Patent number: 10144790
    Abstract: The presently disclosed and claimed inventive concept(s) relates to solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound having at least one ester group and at least one alkoxy group, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. The presently disclosed and claimed inventive concept(s) further relates to methods of making the catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: December 4, 2018
    Assignee: W.R. Grace & Co.-Conn.
    Inventor: Main Chang
  • Patent number: 10137439
    Abstract: A process for increasing the overall yield of pyridine or its alkyl pyridine derivatives during a base synthesis reaction is disclosed. The process comprises reacting a C2 to C5 aldehyde, a C3 to C5 ketone or a combination thereof, with ammonia and, optionally, formaldehyde, in the gas phase and in the presence of an effective amount of a particulate catalyst comprising a zeolite, zinc, a binder, and clay and optionally a matrix, wherein the catalyst has a L/B ratio of about 1.5 to about 4.0. Preferably, the zeolite is ZSM-5. A process for enhancing the catalytic activity of a zinc and zeolite containing catalyst to increase the overall yield of pyridine and/or its derivatives during a base synthesis reaction is also disclosed.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: November 27, 2018
    Assignee: W. R. GRACE & CO.-CONN.
    Inventor: Dorai Ramprasad
  • Patent number: 10137428
    Abstract: Disclosed are silica bound zeolite adsorbent particles which possess high volumetric gas adsorption capacity for the adsorption and/or desorption of gases. The adsorbent are highly effective as a gas source in volumetrically constrained applications. The silica-bound zeolite adsorbents possess a relatively high zeolite content simultaneously with a relatively low intra-particle pore volume as compared to the clay bound zeolite aggregates heretofore used as a gas source in volumetrically constrained environments, e.g. instant beverage carbonation processes, devices or systems.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: November 27, 2018
    Assignee: W. R. GRACE & CO.-CONN
    Inventors: James George Miller, Robert Harding, Demetrius Michos, James Neil Pryor
  • Publication number: 20180305479
    Abstract: Particles of a procatalyst composition having a particle size D50 from 19 microns to 30 microns. A polymerization process comprising halogenating, in the presence of a substituted phenylene aromatic diester, particles of a MagTi procatalyst precursor to form particles of a procatalyst composition having a particle size D50 from 19 microns to 30 microns; first contacting a propylene and optionally one or more first comonomers with a catalyst composition comprising the particles of the procatalyst composition in a first polymerization reactor to form an active propylene-based polymer; and second contacting the active propylene-based polymer with at least one second comonomer in a second polymerization reactor to form a propylene impact copolymer.
    Type: Application
    Filed: June 27, 2018
    Publication date: October 25, 2018
    Applicant: W. R. Grace & Co.-Conn.
    Inventor: Jan W. Van Egmond
  • Patent number: 10093759
    Abstract: A gas-phase process for making a propylene-based polymer in a fluidized-bed reactor, the reactor containing a fluidized bed including polymer product particles and a catalyst, the process having a set of quantitative criteria for maximum monomer partial pressure, maximum reactor temperature, and comonomer content(s) in the propylene-based polymer. The propylene-based polymer may be EBPT or BPRCP. The catalyst may include a catalyst/donor system comprising (1) a supported Ziegler-Natta pro-catalyst, (2) a co-catalyst, and (3) a mixed external electron donor system including (a) an activity limiting agent including at least one carboxylate ester functional group, and (b) a selectivity control agent.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: October 9, 2018
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Ping Cai, Matthew J. Fedec, Jeffrey D. Goad, Jan W. Van Egmond, Chai-Jing Chou
  • Publication number: 20180251686
    Abstract: A process for the laboratory deactivation of a porous solid comprising subjecting the porous solid to a cyclic treatment, the treatment being selected from a hydration/dehydration cyclic treatment, a thermal cyclic treatment, or combinations thereof.
    Type: Application
    Filed: August 18, 2016
    Publication date: September 6, 2018
    Applicant: W. R. Grace & Co. -Conn.
    Inventors: Ruizhong Hu, Gordon Dean Weatherbee, Dariusz Orlicki, Michael Berg
  • Patent number: 10059784
    Abstract: Particles of a procatalyst composition having a particle size D50 from 19 microns to 30 microns. A polymerization process comprising halogenating, in the presence of a substituted phenylene aromatic diester, particles of a MagTi procatalyst precursor to form particles of a procatalyst composition having a particle size D50 from 19 microns to 30 microns; first contacting a propylene and optionally one or more first comonomers with a catalyst composition comprising the particles of the procatalyst composition in a first polymerization reactor to form an active propylene-based polymer; and second contacting the active propylene-based polymer with at least one second comonomer in a second polymerization reactor to form a propylene impact copolymer.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: August 28, 2018
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Jan W. Van Egmond
  • Patent number: 10005072
    Abstract: Particulate catalytic cracking catalysts which comprise a zeolite having catalytic cracking ability under catalytic cracking conditions, added silica, a magnesium salt, an alumina containing binder, clay and optionally, a matrix material. The catalytic cracking catalyst has a high matrix surface area and is useful in a catalytic cracking process, in particularly, a fluid catalytic cracking process, to provide increased catalytic activity and improved coke and hydrogen selectivity without the need to incorporate rare earth metals.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: June 26, 2018
    Assignee: W. R. GRACE & CO.-CONN
    Inventors: Ranjit Kumar, Wu-Cheng Cheng, Kevin J. Sutovich, Michael S. Ziebarth, Yuying Shu