Patents Assigned to W. R. Grace & Co.-Conn.
  • Publication number: 20150210784
    Abstract: The invention concerns catalysts comprising (i) a clad catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the clad catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the clad catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalyst.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: W. R Grace & Co.-Conn.
    Inventors: Stephen R. Schmidt, David M. Chapman, Manoj M. Koranne, Michael D. Jensen
  • Publication number: 20150202602
    Abstract: A rare earth free, ultra low soda, particulate fluid catalytic cracking catalyst which comprises a reduced soda zeolite having fluid catalytic cracking ability under fluid catalytic cracking conditions, a magnesium salt, an inorganic binder, clay and optionally, a matrix material. The catalytic cracking catalyst is useful in a fluid catalytic cracking process to provide increased catalytic activity, and improved coke and hydrogen selectivity without the need to incorporate rare earth metals.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 23, 2015
    Applicant: W. R. GRACE & CO.-CONN.
    Inventors: Yuying Shu, Wu-Cheng Cheng, Richard F. Wormsbecher, Kevin J. Sutovich, Ranjit Kumar, Michael S. Ziebarth
  • Patent number: 9085684
    Abstract: The present invention relates to polypropylene impact copolymer compositions which exhibit improved stiffness without degrading the impact resistance performance. The polypropylene impact copolymer comprises a matrix and a dispersed phase. The matrix comprises a polypropylene homopolymer or a propylene/alpha-olefin random copolymer which comprises more than 50 wt. % of units derived from propylene monomer. The matrix should have a relatively high crystallinity, preferably 50% or greater. The polypropylene homopolymer or a propylene/alpha-olefin random copolymer preferably has a MWD between 4 and 8, such as typically obtained using Ziegler-Natta catalysts. The dispersed phase in the impact copolymer comprises an ethylene-propylene copolymer which comprises from 45 to 70 wt. % of units derived from an ethylene monomer. Preferably the dispersed phase comprises from 20 to 50 percent by weight of the polypropylene impact copolymer.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: July 21, 2015
    Assignee: W.R. Grace & Co.-Conn.
    Inventor: Chai-Jing Chou
  • Patent number: 9045569
    Abstract: Olefin polymerization catalysts or catalyst systems comprising a mixture, contact product, reaction product or complex comprising as elements or components: (A) at least one metallocene pre-catalyst compound or polymerization active metallocene compound; (B) at least one titanium containing metallocene compound; and when (A) is a metallocene pre-catalyst compound, (C) at least one activator; provided however: (I) the titanium-containing metallocene compound is inactive or substantially inactive for the polymerization of olefins prior to or concurrently with the use of the catalyst system for olefin polymerization.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: June 2, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael D. Jensen, Michael J. Elder, Andrew G. Singleton, Stephen R. Schmidt, Patrick J. Kerwin, John H. Hain, Jr., Fengjun Hua
  • Patent number: 9045570
    Abstract: Disclosed are procatalyst compositions having an internal electron donor which include a substituted phenylene aromatic diester and optionally an electron donor component. Ziegler-Natta catalyst compositions containing the present procatalyst compositions exhibit high activity and produce propylene-based olefins with broad molecular weight distribution.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: June 2, 2015
    Assignee: W.R. Grace & Co. - Conn.
    Inventors: Linfeng Chen, Tak W. Leung, Tao Tao
  • Patent number: 9034968
    Abstract: The present invention provides methods, admixture compositions for treating clay-bearing aggregates used for construction purposes, and aggregate compositions for construction purposes. The clay-bearing aggregates are treated with a cationic copolymer made from two and preferably three different monomer components. Cementitious compositions containing the treated aggregates are also described.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 19, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Lawrence L. Kuo, Ying Chen, Hideo Koyata
  • Publication number: 20150113894
    Abstract: The invention provides an aqueously-swellable water stop having an elongate body formed by shaping or extruding a composition mixture comprising water swelling fillers and/or polymers (e.g. Bentonite, super absorbent polymers, hydrophilic polymers), at least one elastomer or polymer, and preferably at least one plasticizer, the composition mixture when formed into an elongate water stop body having a Shore A hardness (durometer) of less than 35 and more preferably in the range of 5-35 (measured at 21° C.). The water stop body has at least one major face and a layer of pressure-sensitive adhesive attached to the face for bonding to a concrete substrate.
    Type: Application
    Filed: December 7, 2013
    Publication date: April 30, 2015
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: Peter J. Kempenaers, Pascal A. Geudens, Michel J. de Ruijter
  • Patent number: 8993656
    Abstract: The present invention discloses compositions and methods wherein polycarboxylate comb polymers are used as grinding additives. The comb polymers contain a carbon-containing backbone and pendant groups wherein oxyalkylene pendant groups contain one or more ether linkage groups for providing robustness to the polymer for resisting degradation during grinding and hence sustaining workability and strength of hydratable cementitious materials, such as cements, pozzolans, limestone, and other cementitious materials.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 31, 2015
    Assignees: W.R. Grace & Co.-Conn., Nippon Shokubai Co., Ltd.
    Inventors: Josephine Cheung, Denise Silva, Byong-Wa Chun, Masahiro Sato
  • Patent number: 8979998
    Abstract: Compositions and methods for increasing grinding efficiency of cement, cement clinker, raw materials for cement, and other inorganic particles. Use of biomass-derived polyols such as diols, triols, or mixtures thereof, optionally with a conventional grinding aid, cement quality improver, and/or hexavalent chromium reducer, are believed to provide less risk of sludging when compared to glycerides obtained from fossil fuel sources.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: March 17, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Leslie A. Jardine, Charlotte Porteneuve, Gerard Blond
  • Publication number: 20150065614
    Abstract: The present invention provides methods and compositions for treating clay-bearing aggregates, particularly those used for construction purposes, whereby inclusion of fines is maximized due to minimization of clay washing which tends to remove such fines, and whereby performance of the aggregate-containing construction material is enhanced. Exemplary methods comprise introducing to clay a water-soluble, functionalized polyamine comprising a water-soluble polyamine formed by reacting an amine compound with an epoxy compound, the polyamine thus reacted being functionalized through the use of certain halide, sulfate, or epoxy compounds.
    Type: Application
    Filed: May 11, 2012
    Publication date: March 5, 2015
    Applicants: SNF S.A.S., W R GRACE & CO.-CONN.
    Inventors: Lawrence L. Kuo, Cedrick Favero, Christophe Roux, Nathan A. Tregger
  • Patent number: 8967919
    Abstract: A preferred embodiment of a system for loading catalyst and/or additives into a fluidized catalytic cracking unit includes a bin for storing at least one of the catalyst and/or additives, and a loading unit in fluid communication with the storage bin and the fluidized catalytic cracking unit on a selective basis. The loading unit is capable of being evacuated so that a resulting vacuum within the loading unit draws the catalyst and/or additive from the bin. The loading unit is also capable of being pressurized so that the catalyst and/or additive is transferred from the loading unit to the fluidized catalytic cracking unit.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 3, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, Lenny Albin, Alfred Jordan
  • Patent number: 8931228
    Abstract: Disclosed is a waterproofing membrane that comprises a carrier sheet, a pressure sensitive adhesive layer on one surface of the carrier sheet, and a protective coating layer on the adhesive layer. The protective coating layer is highly reflective (optionally textured) and operative to bond to concrete cast against it. Preferably, the protective coating layer comprises cement, polymer, and white pigment, and may optionally or additionally include a filler, a UV absorber and an antioxidant. The protective coating layer protects the membrane against weather exposure, tolerates foot traffic and strongly adheres to concrete cast against it. Also disclosed is a waterproofing membrane comprising a carrier sheet, a pressure sensitive adhesive layer, a protective coating layer (as described above), and a highly releasable bonding layer.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 13, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Robert A. Wiercinski, Xia Cao, Robert Paul, Anandakumar Ranganathan
  • Patent number: 8931229
    Abstract: Disclosed is a waterproofing membrane that comprises a carrier sheet, a pressure sensitive adhesive layer on one surface of the carrier sheet, and a protective coating layer on the adhesive layer. The protective coating layer comprises a highly reflective protective coating layer operative to bond to concrete cast against it, particularly one that is produced from an aqueous coating comprising an acrylic emulsion, a filler, and a white pigment. The pigment volume concentration of the filler plus white pigment is greater than or equal to 55% by volume. The protective coating layer protects the membrane against weather exposure, tolerates foot traffic and strongly adheres to concrete cast against it. Also disclosed is a waterproofing membrane comprising a carrier sheet, a pressure sensitive adhesive layer, a protective coating layer, and a highly releasable bonding layer. The preferred highly releasable bonding layer comprises nanoscale silica and a binder.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 13, 2015
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Robert A. Wiercinski, Anandakumar Ranganathan, Xia Cao, Robert Paul
  • Patent number: 8926907
    Abstract: Systems for loading catalyst and/or additives into a fluidized catalytic cracking unit are disclosed. Methods of making and using the systems are also disclosed.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: January 6, 2015
    Assignee: W. R. Grace & Co.-Conn
    Inventor: Lenny Lee Albin
  • Publication number: 20140367338
    Abstract: Chromatography devices contain chromatography media and methods of making and methods of using chromatography devices. Chromatography devices enable a more efficient, productive and/or environmentally friendly chromatographic operation due to one or more of the following advantages over conventional chromatographic operations: elimination of a device packing step by the user; elimination of clean-in-place (CIP) steps; elimination of clean-in-place (CIP) steps utilizing sodium hydroxide solution; elimination of any validation steps by the user; and use of a chromatography device comprising biodegradable material. The chromatography media includes porous inorganic particles having a functionalized surface and having a median pore size of at least about 300 Angstroms (A), or at least about 300 A up to about 3000 A. The inorganic particles may have a BET surface area of at least about 20 m2/g, or at least about 25 m2/g, or about 30 m2/g, up to about 2000 m2/g.
    Type: Application
    Filed: September 16, 2013
    Publication date: December 18, 2014
    Applicant: W.R. Grace & Co. Conn.
    Inventors: Feng Gu, Ning Mu
  • Patent number: 8901026
    Abstract: A catalytic cracking catalyst composition is disclosed that is suitable for reducing the sulfur content of catalytically cracking liquid products, in particularly gasoline products, produced during a catalytic cracking process. Preferably, the catalytic cracking process is a fluidized catalytic cracking (FCC) process. The composition comprises zeolite, zinc and at least one rare earth element having an ionic radius of less than 0.95 ? at a coordination number of 6. Preferably, zinc and the rare earth element are present as cations that have been exchanged on the zeolite. The zeolite is preferably a Y-type zeolite.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: December 2, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Richard Franklin Wormsbecher, Ruizhong Hu
  • Patent number: 8871820
    Abstract: Alumina particles and compositions containing alumina particles are disclosed. Methods of making alumina particles and methods of using alumina particles are also disclosed.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 28, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Demetrius Michos
  • Patent number: 8846787
    Abstract: Exemplary methods and compositions of the invention for retarding the surface of a hydratable cementitious composition comprise the use of a non-bituminous cationic emulsion comprising at least one curing compound comprising an acrylic polymer, a paraffin, or a mixture thereof, to hinder evaporation of water; at least one set retarder; and at least one cationic surfactant.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: September 30, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Eric Dananche, Dany Vincent
  • Patent number: 8845882
    Abstract: Catalytic cracking catalyst compositions and processes for cracking hydrocarbons to maximize light olefins production are disclosed. Catalyst compositions comprise at least one zeolite having catalytic cracking activity under catalytic cracking conditions, preferably Y-type zeolite, which zeolite has low amounts of yttrium in specified ratios to rare earth metals exchanged on the zeolite. Catalyst and processes of the invention provide increased yields of light olefins and gasoline olefins during a FCC process as compared to conventional lanthanum containing Y-type zeolite FCC catalysts.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: September 30, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Yuying Shu, Richard F. Wormsbecher, Wu-Cheng Cheng
  • Publication number: 20140274668
    Abstract: Disclosed herein are processes for preparing procatalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present procatalyst compositions improve catalyst selectivity and also increase the bulk density of the formant polymer.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: W. R. GRACE & CO.-CONN.
    Inventors: Kelly Gonzalez, Clark C. Williams, Linfeng Chen