Patents Assigned to W. R. Grace & Co.-Conn.
  • Patent number: 9796796
    Abstract: A catalyst composition for the polymerization of propylene is provided. The catalyst composition includes one or more Ziegler-Natta procatalyst compositions having one or more transition metal compounds and an internal electron donor, one or more aluminum containing cocatalysts, and a selectivity control agent (SCA). The SCA is a mixture of an activity limiting agent (ALA) and selectivity determining agent (SDA) such as a non-silane composition. The present catalyst composition is silane-free, has high catalyst activity and high stereoselectivity, and is self-extinguishing.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 24, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Publication number: 20170267934
    Abstract: Process for evaluating the catalytic performance of a porous solid using a vapor diffusion technique, where a probe molecule and a molecule for dead-time determination is injected into a carrier gas that is then contacted with the porous solid in a vessel, where a detector analyzes the peak width and retention time of a probe molecule and the retention time of the molecule for dead-time determination in the gas exiting the vessel.
    Type: Application
    Filed: December 1, 2015
    Publication date: September 21, 2017
    Applicant: W. R. Grace & Co,-Conn
    Inventors: Dieter Wallenstein, Stefan Brandt
  • Publication number: 20170239649
    Abstract: A method for synthesizing small crystals of silicoaluminophosphate-34 (SAPO-34) molecular sieves with high structural purity. The method includes first forming a slurry comprising monoisopropanolamine. Then, the slurry is aged to form an aged slurry. Finally, crystallization of silicoaluminophosphate molecular sieves comprising the SAPO-34 molecular sieves is induced from the aged slurry.
    Type: Application
    Filed: August 21, 2015
    Publication date: August 24, 2017
    Applicant: W.R. Grace & Co.-Conn.
    Inventors: Qiuhua Zhang, Manoj Koranne
  • Patent number: 9738736
    Abstract: Solid catalyst components are disclosed including titanium, magnesium, halogen and an internal electron donor compound having a combination of internal electron donor compounds including at least one 1,8-naphthyl diester and at least one secondary internal donor compound selected from alkyl 2-alkoxy-1-naphthoates, alkyl 2-alkoxybenzoates, alkyl 2,6-dialkoxybenzoates, (2-alkoxyphenyl)(pyrrolidin-1-yl)alkanones, dialkyl phthalates, alkyl alkionates, and dialkyl cyclohexane-1,2-dicarboxylates, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. Further, methods of making the catalyst components and the catalyst systems are disclosed as well as methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: August 22, 2017
    Assignee: W. R. GRACE & CO.-CONN
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Main Chang, Neil O'Reilly, Binh Thanh Nguyen
  • Publication number: 20170210996
    Abstract: A method for deoxygenating renewable oils comprised of natural oils or greases or derivatives thereof containing triglycerides or free fatty acids includes the steps of: providing a catalyst comprising a support predominantly comprised of alumina with metal compounds provided on the support based on Mo and at least one selected from the group consisting of Ni and Co, and at least one selected from the group consisting of Cu and Cr, and contacting the renewable oils with the catalyst under conditions sufficient to deoxygenate the renewable oils.
    Type: Application
    Filed: June 8, 2015
    Publication date: July 27, 2017
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: Sundaram Krishnamoorthy, Stephen Raymond Schmidt
  • Publication number: 20170157599
    Abstract: A process for increasing the overall yield of pyridine or its alkyl pyridine derivatives during a base synthesis reaction is disclosed. The process comprises reacting a C2 to C5 aldehyde, a C3 to C5 ketone or a combination thereof, with ammonia and, optionally, formaldehyde, in the gas phase and in the presence of an effective amount of a particulate catalyst comprising a zeolite, zinc, a binder, and clay and optionally a matrix, wherein the catalyst has a L/B ratio of about 1.5 to about 4.0. Preferably, the zeolite is ZSM-5. A process for enhancing the catalytic activity of a zinc and zeolite containing catalyst to increase the overall yield of pyridine and/or its derivatives during a base synthesis reaction is also disclosed.
    Type: Application
    Filed: February 17, 2017
    Publication date: June 8, 2017
    Applicant: W. R. GRACE & CO.-CONN.
    Inventor: Dorai RAMPRASAD
  • Patent number: 9663647
    Abstract: A process for producing a propylene impact copolymer (ICOP), the process comprising the steps of feeding propylene and optionally one or more first comonomers into a first reactor; feeding into the first reactor a catalyst mixture; contacting the propylene with the catalyst mixture under first polymerization conditions to form an active propylene-based polymer; transferring at least a portion of the first reactor contents to a second reactor; feeding additional activity limiting agent, additional selectivity control agent and, optionally additional cocatalyst and one or more second comonomers into the second reactor; and maintaining the second reactor at a second reactor temperature in a range that is sufficient to allow copolymerization to form the propylene impact copolymer (ICOP), wherein the second reactor temperature is below 70° C.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 30, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Jan W. Van Egmond, Jeffrey D. Goad
  • Patent number: 9637325
    Abstract: Systems for loading catalyst and/or additives into a fluidized catalytic cracking unit are disclosed. Methods of making and using the systems are also disclosed.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: May 2, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Lenny Lee Albin
  • Patent number: 9637575
    Abstract: An olefin polymerization catalyst component comprising an internal electron donor compound shown in formula (I) below is provided in this disclosure: wherein X is O, S, NRa, PRb, or POORc, Ra is independently hydrogen, halogen, carbonyl hydrocarbon, linear or branched unsaturated or saturated alkyl hydrocarbon, cyclic, aromatic, or aliphatic hydrocarbon, Rb is independently hydrogen, halogen, carbonyl hydrocarbon, linear or branched unsaturated or saturated alkyl hydrocarbon, linear or branched unsaturated or saturated alkoxy hydrocarbon, cyclic, aromatic, or aliphatic hydrocarbon, Rc is independently hydrogen, carbonyl hydrocarbon, linear or branched unsaturated or saturated alkyl hydrocarbon, cyclic, aromatic, or aliphatic hydrocarbon, R1-R8 are identical or different hydrogen, halogen, linear or branched unsaturated or saturated C1-C30 alkyl, alone or in combination with C5-C30 substituted or unsubstituted 5-or 6-membered aliphatic or aromatic hydrocarbon rings, each of Ra, Rb, Rc, and/or R1-R8 are op
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: May 2, 2017
    Assignee: W. R. GRACE & CO. -CONN.
    Inventors: Binh Thanh Nguyen, Jonas Alves Fernandes
  • Patent number: 9624323
    Abstract: The present disclosure provides a process. In an embodiment, the process includes producing a propylene-based polymer in a gas-phase polymerization reactor (10) under polymerization conditions. The polymerization conditions include a combined propylene-plus-propane partial pressure from 290 psia to 450 psia. The process further includes maintaining the combined propylene-plus-propane partial pressure in the range from 290 psia to 450 psia while simultaneously: (i) reducing propylene partial pressure in the gas-phase polymerization reactor; (ii) adding propane to the gas-phase polymerization reactor; (iii) introducing at least one C4-C10 comonomer into the gas-phase polymerization reactor (26); and forming a propylene/C4-C10 interpolymer in the gas-phase polymerization reactor (44).
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 18, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Sharon E. Peterson, Mark W. Blood, Theodore Duncan
  • Patent number: 9617480
    Abstract: This invention relates to a process of preparing a catalyst from zeolite and peptized alumina. The invention comprises adding a yttrium compound to the zeolite, either prior to, during, or after its combination with the peptized alumina. The yttrium compound can be added to the zeolite via exchange of yttrium onto the zeolite prior to addition of peptized alumina, or the yttrium can be added as a soluble salt during the combination of the zeolite and peptized alumina. In either embodiment, the zeolite catalyst is then formed from the zeolite, yttrium and peptized alumina, optionally containing other inorganic oxide. This invention is suitable for preparing fluid cracking catalysts.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 11, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Yuying Shu, Richard F. Wormsbecher, Wu-Cheng Cheng
  • Patent number: 9598366
    Abstract: A process for increasing the overall yield of pyridine or its alkyl pyridine derivatives during a base synthesis reaction is disclosed. The process comprises reacting a C2 to C5 aldehyde, a C3 to C5 ketone or a combination thereof, with ammonia and, optionally, formaldehyde, in the gas phase and in the presence of an effective amount of a particulate catalyst comprising a zeolite, zinc, a binder, and clay and optionally a matrix, wherein the catalyst has a L/B ratio of about 1.5 to about 4.0. Preferably, the zeolite is ZSM-5. A process for enhancing the catalytic activity of a zinc and zeolite containing catalyst to increase the overall yield of pyridine and/or its derivatives during a base synthesis reaction is also disclosed.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: March 21, 2017
    Assignee: W. R. GRACE & CO.-CONN.
    Inventor: Dorai Ramprasad
  • Patent number: 9593182
    Abstract: Solid catalyst components for use in olefin polymerization, systems incorporating the same, methods of producing the same, and methods of use are disclosed. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: March 14, 2017
    Assignee: W.R.Grace & Co.-Conn.
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Michael Donald Spencer
  • Patent number: 9586879
    Abstract: The present invention discloses a process for the selective hydrogenation of glycerol in the liquid phase to produce 1- and 2-propanols in high yields as the major organic products. The process comprises subjecting a glycerol stream having at least 30% by weight water to a combination of low pressure and high temperature hydrogenation conditions in the presence of a promoted or un-promoted skeletal copper catalyst.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 7, 2017
    Assignee: W. R. GRACE & CO-CONN.
    Inventor: Stephen R. Schmidt
  • Publication number: 20170056854
    Abstract: Methods of making functionalized support material are disclosed. Functionalized support material suitable for use in chromatography columns or cartridges, such as in a high pressure liquid chromatography (HPLC) column or a fast protein liquid chromatography (FPLC) column, is also disclosed. Chromatography columns or cartridges containing the functionalized support material, and methods of using functionalized support material, such as a media (e.g., chromatographic material) in a chromatography column or cartridge, are also disclosed.
    Type: Application
    Filed: April 30, 2015
    Publication date: March 2, 2017
    Applicant: W. R. Grace & Co.-Conn.
    Inventor: Feng Gu
  • Publication number: 20170043318
    Abstract: Disclosed are silica bound zeolite adsorbent particles which possess high volumetric gas adsorption capacity for the adsorption and/or desorption of gases. The adsorbent are highly effective as a gas source in volumetrically constrained applications. The silica-bound zeolite adsorbents possess a relatively high zeolite content simultaneously with a relatively low intra-particle pore volume as compared to the clay bound zeolite aggregates heretofore used as a gas source in volumetrically constrained environments, e.g. instant beverage carbonation processes, devices or systems.
    Type: Application
    Filed: April 8, 2015
    Publication date: February 16, 2017
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: James George Miller, Robert Harding, Demetrius Michos, James Neil Pryor
  • Patent number: 9567410
    Abstract: The presently disclosed and claimed inventive concept(s) relates to solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound having at least one ester group and at least one alkoxy group, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. The presently disclosed and claimed inventive concept(s) further relates to methods of making the catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: February 14, 2017
    Assignee: W.R. Grace & Co.-Conn.
    Inventor: Main Chang
  • Patent number: 9562119
    Abstract: The present invention relates to solid catalyst components comprising a reaction product of a titanium compound, a magnesium compound, an alcohol, an aluminum alkoxide, a siloxane mixture, and a maleate derivative; and catalyst systems comprising the solid catalyst components and organoaluminum compounds. The present invention also relates to methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing ethylene using the catalyst systems.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: February 7, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Main Chang, Thomas Garoff
  • Patent number: 9556291
    Abstract: The present disclosure is directed to a process for producing olefin-based polymer in a gas phase polymerization reactor. The process includes forming a wet zone in the gas phase polymerization reactor. The wet zone is formed by maintaining a temperature less than or equal to the fluidizing medium dew point temperature+2° C. in a region of the reactor. The region is defined as the region extending from the distributor plate to 2.5 meters above the distributor plate. Injection of a high activity catalyst composition in the wet zone produces olefin-based having a settled bulk density greater than 23.5 lb/ft3.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: January 31, 2017
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Jan W. Van Egmond, Daniel J. Chismar, Jeffrey D. Goad
  • Patent number: 9528059
    Abstract: The process of this invention removes impurities from transesterification products comprising primarily fatty acid alkyl esters (FAAE) that are being processed for final fuel products, such as biodiesel. The inventive process is catalytic, and the resulting ester is suitable for use as biodiesel. Metal oxide and mixed metal oxide catalysts are particularly suitable. The invention is particularly suitable for treating fatty acid alkyl ester compositions comprising impurities such as glycerin, sterol glycosides, and/or triglyceride, diglyceride and/or monoglyceride. The invention is particularly useful in treating FAAE transesterification products made using homogeneous alkali catalysts. The treated ester exhibits improved performance under cold weather conditions, which can be measured by methods such as ASTM 7501 Cold Soak Filtration Test (CSFT).
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: December 27, 2016
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Stephen R. Schmidt, Meenakshi S. Krishnamoorthy, Manoj M. Koranne, Heiko Morell, Jochen G. Metzger