Patents Assigned to Wacoh Corporation
  • Patent number: 5850040
    Abstract: Upper electrodes (A1 to A5) are disposed on an upper surface of a disk-shaped piezoelectric element (10). On a lower surface of the piezoelectric element (10), an annular groove to surround origin O is formed at position corresponding to the upper electrodes (A1 to A5). At the portion where the annular groove is formed, the piezoelectric element (10) includes a flexible portion formed so as to have thin thickness. When the peripheral portion of the piezoelectric element (10) is fixed to the casing, the central portion positioned within the annular groove functions as a weight caused to hang down from the flexible portion. On the lower surface of the piezoelectric element (10), a lower electrode (B) is formed. When force is applied to the weight by acceleration, the flexible portion is bent. As a result, predetermined charges are produced in the upper electrodes (A1 to A5) with the lower electrode (B) being as a reference potential. Accordingly, applied acceleration can be detected. When a predetermined a.c.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: December 15, 1998
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 5668318
    Abstract: An angular velocity sensor for detecting angular velocity components about three axes with high response is provided. A weight body carries out a circular movement along a circular orbit within the XY-plane with the origin being as a center. The weight body is supported so that it can be moved with a predetermined degree of freedom within a sensor casing. A Coriolis force Fco exerted in the Z-axis direction to the weight body is detected when the weight body passes through the X-axis at the point Px and an angular velocity .omega.x about the X-axis is obtained based on the detected force. Further, a Coriolis force Fco exerted in the Z-axis direction to the weight body is detected when the weight body passes through the Y-axis at the point Py and an angular velocity .omega.y about the Y-axis is obtained based on the detected force. In addition, a force exerted in the X-axis direction to the weight body at the point Px is detected and an angular velocity .omega.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: September 16, 1997
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 5263375
    Abstract: There is disclosed an applied technology of an elementary sensor for sensing a force comprising a transducer for transforming a mechanical deformation to an electric signal, and a first strain generative body (20) including a supporting portion (21) and a working portion (23) connected to the transducer so as to allow the transducer to produce a mechanical deformation on the basis of a displacement relative to the supporting portion of the working portion.
    Type: Grant
    Filed: September 25, 1991
    Date of Patent: November 23, 1993
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 5182515
    Abstract: A force detector is comprised of resistance elements having a piezo resistance effect such that electric resistance varies due to mechanical deformation, and formed on a single crystal substrate (10), and a strain generative body (20) having a supporting portion (21) and a working portion (23), thus allowing the resistance elements to produce a mechanical deformation on the basis of a displacement with respect to the supporting portion of the working portion. This force detector can detect a force applied to the working portion as changes in resistance values of the resistance elements. The plane on which resistance elements are to be formed on the single crystal substrate is selected so that piezo resistance coefficients in two directions perpendicular to each other exhibit peak. When a weight body (30) is connected to the working portion, it is possible to detect an acceleration acting on the weight body.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: January 26, 1993
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 5092645
    Abstract: An elementary sensor for sensing a force comprises a transducer for transforming a mechanical deformation to an electric signal, and a first strain generative body (20) including a supporting portion (21) and a working portion (23) connected to the transducer so as to allow the transducer to produce a mechanical deformation on the basis of a displacement relative to the supporting portion of the working portion. By further adding a second strain generative body (30) including a fixed portion (31) fixed at least with respect to the direction of a force to be detected, and a displacement portion (33) connected to the working portion of the first strain generative body, wherein the displacement portion is constructed to produce a displacement based on a given external force relative to the fixed portion to transmit the displacement thus produced to the working portion of the first strain generative body, a force detector applicable to a wide variety of measurement ranges can be realized.
    Type: Grant
    Filed: June 19, 1989
    Date of Patent: March 3, 1992
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 5035148
    Abstract: A force detector for detecting forces exerted in axial directions or moments exerted about respective axes uses an origin as a working point in an XYZ three-axis coordinate system. Four bridge circuit portions on the upper surface of a substrate have resistance elements along positive and negative directions of the X and Y axes. The resistance elements have a property such that their electric resistances vary due to a mechanical deformation, and detection of a force is made by voltage variations so produced in the bridge circuits of the bridge circuit portions. A strain generative body is used in order to transmit an external force to the substrate. The strain generative body has a first flexible portion having a sufficient flexibility with respect to the Z axis direction and a second flexible portion having sufficient flexibility with respect to the directions perpendicular to the Z axis, thus permitting detection sensitivities with respect to each axis to be made uniform.
    Type: Grant
    Filed: January 25, 1990
    Date of Patent: July 30, 1991
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 5014415
    Abstract: A first substrate having a working region, a flexible region, and a fixed region is prepared. Resistance elements are formed within the flexible region on a first surface of this substrate. A portion of the first substrate is removed. Thus, the flexible region is allowed to have flexibility. A second substrate is connected to a second surface of the first substrate. The second substrate is cut later into two portions of a working portion and a pedestal. The working portion is connected to the working region of the first substrate, and the pedestal is connected to the fixed region of the first substrate. In order to control displacements in upward and downward directions of the working portion, control substrates are further connected. A force applied to the working portion by acceleration or magnetism is detected as changes in the resistance values of the resistance elements.
    Type: Grant
    Filed: May 22, 1990
    Date of Patent: May 14, 1991
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 4969366
    Abstract: Force and moment exerted on the working point (P) on a semiconductor substrate (110, 210), on one surface of which resistance elements (r, R) having an electric resistance varying due to mechanical deformation are formed, are detected. A portion spaced from the working point of the semiconductor substrate is fixed. Since openings (113) or bridge portions (212 to 215) are formed in the semiconductor substrate, when a force or an angular moment in a fixed direction is applied to the working point, uneven stresses are produced on the semiconductor substrate. Such uneven stesses are detected as changes in electric resistances of the resistance elements. A measure is taken for an arrangement of resistance elements on the semiconductor substrate, thereby to constitute predetermined bridges. Thus, forces in three directions and angular moments in three directions in the three-dimensional space can be independently read as bridge voltages, respectively.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: November 13, 1990
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 4967605
    Abstract: A force detector is comprised of resistance elements having a piezo resistance effect such that electric resistance varies due to mechanical deformation, and formed on a single crystal substrate (10), and a strain generative body (20) having a supporting portion (21) and a working portion (23), thus allowing the resistance elements to produce a mechanical deformation on the basis of a displacement with respect to the supporting portion of the working portion. This force detector can detect a force applied to the working portion as changes in resistance values of the resistance elements. The plane on which resistance elements are to be formed on the single crystal substrate is selected so that piezo resistance coefficients in two directions perpendicular to each other exhibit peak. When a weight body (30) is connected to the working portion, it is possible to detect an acceleration acting on the weight body.
    Type: Grant
    Filed: December 19, 1988
    Date of Patent: November 6, 1990
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada
  • Patent number: 4905523
    Abstract: Force and moment exerted on the working point (P) on a semiconductor substrate (110; 210), on one surface of which resistance elements (r, R) having an electric resistance varying due to mechanical deformation are formed, are detected. A portion spaced from the working point of the semiconductor substrate is fixed. Since openings (113) or bridge portions (212 to 215) are formed in the semiconductor substrate, when a force or an angular moment in a fixed direction is applied to the working point, uneven stresses are produced on the semiconductor substrate. Such uneven stresses are detected as changes in electric resistances of the resistance elements. A measure is taken for an arrangement of resistance elements on the semiconductor substrate, thereby to constitute predetermined bridges. Thus, forces in three directions and angular moments in three directions in the three-dimensional space can be independently read as bridge voltages, respectively.
    Type: Grant
    Filed: December 19, 1988
    Date of Patent: March 6, 1990
    Assignee: Wacoh Corporation
    Inventor: Kazuhiro Okada