Patents Assigned to Xponent Photonics Inc
  • Patent number: 6888987
    Abstract: A method for cylindrical processing of an optical medium, including optical fiber and optical materials of substantially cylindrical form. The method of the preferred embodiments includes the steps of rotating an optical medium about a longitudinal relative rotation axis thereof relative to a processing tool; spatially selectively applying the processing tool to a portion of a surface of the optical medium in operative cooperation with relative rotation of the optical medium and the processing tool, thereby producing a patterned (i.e., spatially selective) structural alteration of the optical medium, the pattern including altered, differentially-altered and unaltered portions of the optical medium. Specialized techniques for spatially selectively generating the structural alteration may include masking/etching, masking/deposition, machining or patterning with lasers or beams, combinations thereof, and/or functional equivalents thereof.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 3, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Peter C. Sercel, Kerry J. Vahala, David W. Vernooy, Guido Hunziker
  • Patent number: 6870992
    Abstract: Optical components may be aligned for transverse-optical coupling by: fabricating a first optical component on a substrate; fabricating an alignment member on the substrate suitably positioned relative to the first optical component; and assembling a second optical component onto the alignment member, thereby establishing transverse optical coupling between the optical components. The substrate may preferably be substantially planar. The alignment member may mechanically engage the second optical component so as to accurately establish and stably maintain transverse optical coupling. The first optical component and the alignment member may preferably be fabricated on the substrate using precision spatially selective materials processing techniques. Transverse optical coupling between two optical components may be stably maintained by substantially embedding transverse-coupled portions of the components in a substantially solid substantially transparent low-index medium.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: March 22, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Charles I. Grosjean, Guido Hunziker, Paul M. Bridger, Oskar J. Painter
  • Patent number: 6865317
    Abstract: A resonant optical filter includes first and second transmission waveguides and a resonator (including one or more evanescently coupled resonator segments). The resonator supports at least one circumferential resonant mode and is evanescently coupled to the waveguides. An optical signal entering the filter through a waveguide and substantially resonant with the resonator is transferred to the other waveguide, while an optical signal entering the filter and substantially non-resonant with the resonator remains in the same waveguide. Multiple resonator segments may be formed on a common resonator fiber and positioned for enabling coupling between them, resulting in a tailored frequency filter function. The resonators may include alignment structure(s) (flanges, grooves, etc) for enabling passive positioning and/or supporting first and second transmission waveguides, such as optical fiber tapers.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: March 8, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Kerry J. Vahala, Peter C. Sercel, David W. Vernooy, Oskar J. Painter, Guido Hunziker
  • Patent number: 6847748
    Abstract: A recessed area formed on a substrate surface is filled with heat sink material to form a heat sink. The heat sink material has thermal conductivity greater than that of the substrate. The heat sink may have a substantially flat surface substantially flush with the substrate surface. The substrate may further include: a planar optical waveguide formed thereon positioned for optical coupling with an optical device mounted on the substrate in thermal contact with the heat sink; and/or an electrical contact layer formed thereon positioned for establishing electrical continuity with an optical device mounted on the substrate in thermal contact with the heat sink. The electrical contact may also provide thermal contact between the device and heat sink. The substrate may further include a low-index optical buffer layer formed on its surface. Materials for the substrate, buffer layer, and heat sink may include silicon, silica, and diamond, respectively.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: January 25, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Albert M. Benzoni, Mark D. Downie
  • Patent number: 6839491
    Abstract: A multi-layer laterally-confined dispersion-engineered optical waveguide may include one multi-layer reflector stack for guiding an optical mode along a surface thereof, or may include two multi-layer reflector stacks with a core therebetween for guiding an optical mode along the core. Dispersive properties of such multi-layer waveguides enable modal-index-matching between low-index optical fibers and/or waveguides and high-index integrated optical components and efficient transfer of optical signal power therebetween. Integrated optical devices incorporating such multi-layer waveguides may therefore exhibit low (<3 dB) insertion losses. Incorporation of an active layer (electro-optic, electro-absorptive, non-linear-optical) into such waveguides enables active control of optical loss and/or modal index with relatively low-voltage/low-intensity control signals. Integrated optical devices incorporating such waveguides may therefore exhibit relatively low drive signal requirements.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 4, 2005
    Assignee: Xponent Photonics Inc
    Inventors: Oskar J. Painter, David W. Vernooy, Kerry J. Vahala