Patents Examined by Agustin Bello
  • Patent number: 11747580
    Abstract: An optical port shielding and fastening apparatus is configured to be installed in the optical module. The optical module includes a housing assembly and an optical component located in the housing assembly. The optical port shielding and fastening apparatus includes a fastener and an electromagnetic wave absorbing piece. The fastener is fastened in the housing assembly. The electromagnetic wave absorbing piece is fastened on a side that is of the fastener and that faces an outside of the housing assembly. A first mounting hole and a second mounting hole are correspondingly provided on the fastener and the electromagnetic wave absorbing piece. The optical component passes through the first mounting hole and the second mounting hole in sequence. This application provides an optical port shielding and fastening apparatus, an optical module, and a communications device, to resolve poor optical port shielding performance of an optical module in the related technology.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: September 5, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Song Yang, Sufei Miao, Zhigang Wang, Liang Xu, Yu Huang
  • Patent number: 11747577
    Abstract: A waveguide connection structure consists of a waveguide chip having a waveguide, and a connector having a groove dug in a thickness direction, the waveguide chip and the connector each having a concave-convex portion that fit into each other in a state of being adjacent to each other on the same plane.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: September 5, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Norio Sato, Kota Shikama
  • Patent number: 11742949
    Abstract: Power saving is achieved in an optical wireless communication (VLC/LiFi) system by using a polling-based medium access control (MAC) scheme, wherein an access point can use a silent period when no one is polled (and EPs can thus sleep). When transmission queues are empty, the access point may apply the silent period which may be based on a minimum polling interval announced by broadcast.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: August 29, 2023
    Assignee: SIGNIFY HOLDING B.V.
    Inventor: Andries Van Wageningen
  • Patent number: 11728614
    Abstract: A photonics device includes a silicon wafer including a cathode region, an anode region, a trench region formed between the cathode region and the anode region, and a linear ridge formed between the cathode region and the anode region. A laser diode chip is mounted on the silicon wafer. A conductor layer disposed between the silicon wafer and the laser diode chip includes a first section disposed between the laser diode chip and the cathode region on a first side of the trench to electrically connect the laser diode chip to a cathode electrode of the photonics device and a second section disposed between the anode region and the laser diode chip on a second side of the trench to electrically connect the laser diode chip to an anode electrode of the photonics device.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: August 15, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Xiaoguang He, Radhakrishnan L. Nagarajan
  • Patent number: 11726279
    Abstract: Apparatuses, systems, and methods are described that provide improved networking communication systems and associated adapters. An example networking communication adapter includes an adapter housing defining a first end and a second end opposite the first end. The first end is configured to engage an Octal Small Form Factor Pluggable (OSFP) connector, and the second end is configured to receive a Quad Small Form Factor Pluggable Double Density (QSFP-DD) transceiver therein. The networking communication adapter further includes an inner connector positioned within the adapter housing. In an operational configuration in which the first end engages the OSFP connector and the second end receives the QSFP-DD transceiver, the inner connector operably connects the QSFP-DD transceiver with the OSFP connector such that signals may pass therebetween.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: August 15, 2023
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Ilya Margolin, Rony Setter, Andrey Ger, Yaniv Kazav, Tarek Hathoot
  • Patent number: 11709328
    Abstract: A plug connector is attachable with an optical fiber cable and is connectable with a receptacle connector. The receptacle connector comprises a receptacle shell. The plug connector comprises a front holder, a cable holding portion, a rear holder and a coupling member. The front holder is made of metal. The front holder is mated with the receptacle shell when the plug connector is connected with the receptacle connector. The cable holding portion is made of metal. The cable holding portion is configured to hold the optical fiber cable. The rear holder guards the cable holding portion. The rear holder comprises, at least in part, a thermal insulating portion made of non-metal material. The coupling member couples the front holder and the rear holder with each other. Each of the coupling member and the front holder is in contact with the rear holder only on the thermal insulating portion.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: July 25, 2023
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Yuichi Koreeda, Shingo Nakajima, Masaki Ishiguro
  • Patent number: 11693195
    Abstract: An optical pick and place machine that includes a self-calibrating optical controller for error feedback based optical placement of optical components using active alignment is described. The optical controller can include a loopback mode to generate a baseline value of light generated by a light source and measured by a photodetector within the optical controller. The optical controller can further include an active alignment mode in which the light is coupled from the pick and place machine to the optical device on which the component is placed. The optical coupling of the placed component can be evaluated against the baseline value to ensure that the optical coupling is within specification (e.g., within a prespecified range).
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: July 4, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Steven William Keck, Roberto Marcoccia, Steve McGowan
  • Patent number: 11689285
    Abstract: The present invention provides systems and methods for providing geolocation services in a mobile-based crowdsourcing platform. More specifically, the system of the present invention includes a plurality of remote mobile devices and a visible light communication (VLC) enabled lighting system configured to communicate and exchange data with a cloud-based service, such as a crowdsourcing platform. The crowdsourcing platform generally provides a geolocation service based on the crowdsourcing, or polling, of users of the mobile devices, in addition to VLC data captured by the VLC-enabled lighting system, so as to determine location and movement of the users within a specific environment. The system is further configured to automatically render a floor plan or layout of a location based on the user data and VLC data.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: June 27, 2023
    Assignee: CrowdComfort, Inc.
    Inventors: Abdullah Daoud, B. Eric Graham
  • Patent number: 11686906
    Abstract: Alignment aid structures and the method of formation of these structures on an interposer comprised of a planar waveguide layer and a base structure, facilitate the alignment of the optical axes of optical and optoelectrical devices formed from and mounted to the interposer. Alignment aids formed from a common hard mask on the planar waveguide layer of the interposer structure include vertical and lateral alignment structures and fiducials. Optical losses for signals propagating in interposer-based photonic integrated circuits are reduced with effective alignment structures and methods.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: June 27, 2023
    Inventor: Suresh Venkatesan
  • Patent number: 11675148
    Abstract: An optical-path-displacement-compensation-based emission optical power stabilization assembly, comprising: a laser, a lens, and an optical fiber coupling port disposed on a first substrate and a second substrate according to a preset arrangement scheme, wherein an expansion coefficient of the second substrate is larger than that of the first substrate, and the preset arrangement scheme enables initial distances between the laser and the lens, between the lens and the optical fiber coupling port, and/or between the laser and the optical fiber coupling port to differ from respective optical coupling distances from an optical coupling point by a preset value, thereby ensuring that a coupling loss on an optical path changes along with the temperature, forming a complementary effect with respect to an optical power-temperature curve of the laser, which reduces a temperature-caused fluctuation of the emission optical power of an optical assembly.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 13, 2023
    Inventors: Hu Zhu, Shujian Du, Yanling Guo, Hongyang Liu, Rikai Zhou, Yongan Fu, Liping Sun
  • Patent number: 11668948
    Abstract: Aspects for active alignment for assembling optical imaging systems are described herein. As an example, the aspects may include aligning an optical detector with an optical component. The optical component is configured to alter a direction of one or more light beams emitted from an image displayed by an optical engine. The aspects may further include detecting, by the optical detector, a virtual image generated by the one or more light beams emitted by the optical engine; and adjusting, by a multi-axis controller, an optical path of the one or more light beams based on one or more parameters of the virtual image collected by the optical detector.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: June 6, 2023
    Assignee: YUTOU TECHNOLOGY (HANGZHOU) CO., LTD.
    Inventors: Kun Li, Da Wei, Jingtao Zhu, Liang Guan, Adrian Lake, Yi Rao
  • Patent number: 11671195
    Abstract: A system comprising a hub transceiver coupled to a first network node; and a plurality of edge transceivers, each configured to be communicatively coupled to a respective second network node, and to the hub transceiver, wherein the hub transceiver is operable to transmit a first message to each of the edge transceivers, the first message comprising an indication of available optical subcarriers and availability to use multiple non-contiguous optical subcarriers; receive, a service request identifying a selected subset of the available optical subcarriers including a non-contiguous first optical subcarrier and second optical subcarrier, transmit a second message to indicate either a success or a failure, and receive, via the selected subset, data from the second network node, and wherein at least one of the edge transceivers is operable to, transmit, using the selected subset of available optical subcarriers, data from the second network node to the first network node.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: June 6, 2023
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Steven J. Hand, Paul N. Freeman
  • Patent number: 11664902
    Abstract: Planar assemblies for coupling a plurality of optical transceivers to the same optical fiber. For example, the optical transceivers may be PON transceivers functioning according to different data rates and/or different modulation formats. Each optical transceiver communicates using one or more different wavelength channels. At least some of the disclosed planar assemblies are scalable to couple various numbers of optical transceivers to the same end face of an optical fiber, e.g., by fixing a corresponding number of passive, slab-like optical filters to a substantially planar surface of the support substrate to which the optical transceivers are also fixed adjacent and along. Some embodiments may employ various bulk lenses fixed to said planar surface to suitably relay light-beam segments between the end face of the fiber and the optical transceivers and/or between the different slab-like optical filters.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: May 30, 2023
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Mark P. Earnshaw, Cristian A. Bolle, David T Neilson
  • Patent number: 11662602
    Abstract: Aspects for active alignment for assembling optical imaging systems are described herein. As an example, the aspects may include aligning an optical detector with an optical component. The optical component is configured to alter a direction of one or more light beams emitted from an image displayed by an optical engine. The aspects may further include detecting, by the optical detector, a virtual image generated by the one or more light beams emitted by the optical engine; and adjusting, by a multi-axis controller, an optical path of the one or more light beams based on one or more parameters of the virtual image collected by the optical detector.
    Type: Grant
    Filed: September 21, 2022
    Date of Patent: May 30, 2023
    Assignee: YUTOU TECHNOLOGY (HANGZHOU) CO., LTD.
    Inventors: Kun Li, Da Wei, Jingtao Zhu, Liang Guan, Adrian Lake, Yi Rao
  • Patent number: 11656415
    Abstract: Disclosed is an optical connector cable including a plurality of optical fibers, a lens module, and an adhesive portion. Each of the plurality of optical fibers extends in a first direction. The lens module includes a placement structure configured to place the plurality of optical fibers thereon in order in a second direction intersecting the first direction and a plurality of lenses optically coupled to tip ends of the plurality of optical fibers. The adhesive portion fixes the plurality of optical fibers to the placement structure with an adhesive. The adhesive portion includes a first adhesive portion located near the tip ends of the plurality of optical fibers and a second adhesive portion located behind the first adhesive portion in the first direction. The second adhesive portion has a Young's modulus higher than that of the first adhesive portion.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: May 23, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taisuke Nagasaki, Takeshi Inoue, Toshihisa Yokochi
  • Patent number: 11650384
    Abstract: Heat dissipation and electric shielding techniques and apparatuses are disclosed to enable the operation of OSFP modules at higher bandwidths. OSFP compatible techniques are discussed including the use of water cooling, addition of heat pipes, use of intercoolers, air-fins and air-foils, optimization of cooling fins, use of vapor chambers are discussed.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: May 16, 2023
    Assignee: Google LLC
    Inventors: William F. Edwards, Jr., Melanie Beauchemin, Timothy Conrad Lee, Federico Pio Centola, Madhusudan K. Iyengar, Michael Chi Kin Lau, Zuowei Shen, Justin Sishung Lee
  • Patent number: 11650385
    Abstract: A housing for an electronic device includes a panel, where the panel includes a window. A cage includes a plurality of panels and a first end and a second end that opposes the first end. The cage further includes an opening at its first end and an enclosure disposed between the panels of the cage. Connecting structure is disposed at the first end of the cage, where the connecting structure secures the first end of the cage to the panel. The cage is suitably dimensioned to receive and retain a portion of an optical module within the enclosure when the optical module is inserted within the opening at the first end of the cage.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: May 16, 2023
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Joel Richard Goergen, Paolo Sironi, Giovanni Giobbio, M. Baris Dogruoz
  • Patent number: 11650382
    Abstract: Structures including an optical component, such as an edge coupler, and methods of fabricating a structure that includes an optical component, such as an edge coupler. The structure includes a substrate having a sealed cavity, an optical component, and a dielectric layer between the optical component and the sealed cavity. The optical component is positioned vertically over the substrate and the dielectric layer, and the optical component overlaps with the sealed cavity in the substrate.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: May 16, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Ryan Sporer, Yusheng Bian, Takako Hirokawa
  • Patent number: 11646812
    Abstract: This disclosure describes devices and methods related to multiplexing optical data signals. A method may be disclosed for multiplexing one or more optical data signals. The method may comprise receiving, by a dense wave division multiplexer (DWDM), one or more optical data signals. The method may comprise combining, by the DWDM, the one or more optical data signals. The method may comprise outputting, by the DWDM, the combined one or more optical data signals to one or more wave division multiplexer (WDM). The method may comprise combining, by the one or more WDM, the combined one or more optical data signals and one or more second optical data signals, and outputting an egress optical data signal comprising the combined one or more optical data signals and one or more second optical data signals.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 9, 2023
    Assignee: COX COMMUNICATIONS, INC.
    Inventors: Harjinder S. Ghuman, Christopher Palmquist, David Job, Robert Kuse
  • Patent number: 11644629
    Abstract: A waveguide connecting structure includes an inserting waveguide having an inserting conduit line and a flange extending outwardly in a conduit radial-direction, and a receiving waveguide having a receiving conduit line, a receiving structure into which the inserting waveguide is inserted, and stub grooves disposed on both sides of the receiving conduit line outwardly in the direction. The receiving structure has a receiving end face extending in the radial direction and opposing to a flange end face, and an annular receiving inner-circumferential surface disposed outward of the flange and extending in a conduit axial-direction. An electric length of each stub groove in the axial direction from an opening first end to a closing second end is ½ of a conduit wavelength of the stub groove.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: May 9, 2023
    Assignee: FURUNO ELECTRIC CO., LTD.
    Inventors: Kazuyoshi Fujisaki, Mitsuhiko Hataya