Patents Examined by Alexander Sofocleous
  • Patent number: 8520430
    Abstract: A memory device includes a first nanowire connected to a first bit line node and a ground node, a first field effect transistor (FET) having a gate disposed on the first nanowire, a second FET having a gate disposed on the first nanowire, a second nanowire connected to a voltage source node and a first input node, a third FET having a gate disposed on the second nanowire, a third nanowire connected to the voltage source node and a second input node, a fourth FET having a gate disposed on the third nanowire, a fourth nanowire connected to a second bit line node and the ground node, a fifth FET having a gate disposed on the fourth nanowire, and a sixth FET having a gate disposed on the fourth nanowire.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy Cohen, Amlan Majumdar, Jeffrey W. Sleight
  • Patent number: 8520462
    Abstract: A semiconductor memory apparatus includes a memory cell array including a plurality of chips, a control circuit configured to control an internal operation of the memory cell array, a power circuit configured to supply power to the control circuit, and a mode setting circuit configured to output a flag signal for power supply control based on a mode register set command and data received through a data input/output pad, in response to a clock enable signal.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: August 27, 2013
    Assignee: SK Hynix Inc.
    Inventor: Kie Bong Ku
  • Patent number: 8516188
    Abstract: A circuit is configured to be mounted on a memory module configured to be operationally coupled to a computer system. The memory module has a first number of ranks of double-data-rate (DDR) memory circuits activated by a first number of chip-select signals. The circuit is configurable to receive a set of signals comprising address signals and a second number of chip-select signals smaller than the first number of chip-select signals. The circuit is further configurable to generate phase-locked clock signals, to selectively isolate a load of at least one rank of the first number of ranks from the computer system in response at least in part to the set of signals, and to generate the first number of chip-select signals in response at least in part to the phase-locked clock signals, the address signals, and the second number of chip-select signals.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: August 20, 2013
    Assignee: Netlist, Inc.
    Inventors: Jeffrey C. Solomon, Jayesh R. Bhakta
  • Patent number: 8508992
    Abstract: A method of operating a semiconductor memory device includes performing an LSB program operation for selected memory cells while raising a program voltage, when the threshold voltages of some of the selected memory cells reach a target level, storing data, corresponding to a relevant program voltage, in a first flag cell, performing the LSB program operation for some of the selected memory cells, having threshold voltages not reached the target level, until the threshold voltages of all the selected memory cells reach the target level, and after the LSB program operation is completed, performing an MSB program operation for the selected memory cells by using a program voltage, set based on the data stored in the first flag cell, as a start program voltage.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 13, 2013
    Assignee: SK Hynix Inc.
    Inventor: Seong Je Park
  • Patent number: 8509024
    Abstract: Such a device is disclosed that includes a terminal, a first voltage generator generating, when activated, a voltage at the terminal and stopping, when deactivated, generating the voltage, and a second voltage generator generating, when activated, the voltage at the terminal and stopping, when deactivated, generating the voltage. The first voltage generator being configured to be activated in response to a first control signal taking an active level and deactivated in response to the first control signal taking an inactive level, and the second voltage generator being configured to be activated in response to each of the first control signal and a second control signal taking an active level and deactivated in response to at least one of the first and second control signal taking an inactive level.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 13, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kosuke Goto, Takuyo Kodama
  • Patent number: 8502115
    Abstract: An engine driven welder-generator including a chopper circuit and being adapted to produce an AC weld output, a DC weld output, and an auxiliary output is provided. The engine driven welder-generator is capable of selectively running at a low engine speed or a high engine speed based on operator inputs and may produce both AC and DC power outputs while utilizing the chopper circuit. The engine driven welder-generator is also adapted to provide an auxiliary output during an AC welding process and a DC welding process.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: August 6, 2013
    Assignee: Illinois Tool Works Inc.
    Inventors: Randall Joseph DuVal, Daniel C. Fosbinder
  • Patent number: 8503217
    Abstract: A two-dimensional array of switching devices comprises a plurality of crossbar tiles. Each crossbar tile has a plurality of row wire segments intersecting a plurality of column wire segments, and a plurality of switching devices each formed at an intersection of a row wire segment and a column wire segment. The array has a plurality of lateral latches disposed in a plane of the switching devices. Each lateral latch is linked to a first wire segment of a first crossbar tile and a second wire segment of a second crossbar tile opposing the first wire segment. The lateral latch is operable to close or open to form or break an electric connection between the first and second wire segments.
    Type: Grant
    Filed: April 30, 2011
    Date of Patent: August 6, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wei Yi, Gilberto Medeiros Ribeiro, R. Stanley Williams
  • Patent number: 8503216
    Abstract: According to one embodiment, a resistance change type memory includes a memory cell and a capacitor which are provided on a semiconductor substrate. The memory cell includes a resistance change type memory and a select transistor. The resistance change type storage element changes in resistance value in accordance with data to be stored. The select transistor includes a first semiconductor region provided in the semiconductor substrate, and a gate electrode facing the side surface of the first semiconductor region via a gate insulating film. The capacitor includes a second semiconductor region provided in the semiconductor substrate, a capacitor electrode facing the side surface of the second semiconductor region, and a first capacitor insulating film provided between the second semiconductor region and the capacitor electrode.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Kajiyama
  • Patent number: 8503249
    Abstract: Semiconductor memory devices and methods include a flash memory cell array fabricated in a well, with memory cells in the same column connected to each other in series and connected to a respective bit line. The memory devices also include a column decoder, a data register buffer unit, a row decoder, an erase control unit, and an input/output buffer unit. In one or more embodiments, the erase control unit applies voltages to the well to erase the memory cells in a manner that avoids breaking down p-n junctions formed by transistors fabricated in the well. In another embodiment, high voltage transistors are used to selectively isolate the bit lines from and couple the bit lines to a peripheral circuit in pairs so that each high voltage transistor is shared by two bit lines.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Shigekazu Yamada, Tomoharu Tanaka
  • Patent number: 8503262
    Abstract: A semiconductor device includes a first circuit that generates a self refresh signal in a predetermined cycle asynchronous with a cycle set externally, a second circuit that generates a refresh address in response to the self refresh signal and updates the refresh address and outputs the refresh address, a third circuit that retains a relief address, a fourth circuit that counts number of generation of the self refresh signal and activates an interrupt signal when a count of the number of generation reaches a predetermined count, a fifth circuit that specifies the refresh address when the interrupt signal is in an inactive state and specifies the relief address when the interrupt signal is in an active state, and a sixth circuit that performs a refresh operation on memory cells specified by the selected refresh address or the relief address. The second circuit temporarily stops updating the refresh address in response to activation of the interrupt signal.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 6, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Keisuke Fujishiro, Sachiko Kamisaki
  • Patent number: 8503253
    Abstract: A supply voltage generating circuit includes a first charge pump circuit that generates a first internal supply voltage, and second charge pump circuit that generates a second internal supply voltage. The absolute value of the second internal supply voltage is greater than that of the first internal supply voltage. The output terminal of the first charge pump circuit is connected to a secondary-side charging terminal of the second charge pump circuit. The secondary-side is an output-side of the corresponding charge pump circuit, and the charging terminal is an auxiliary charging terminal that supplies an auxiliary charge to a secondary-side output terminal of the corresponding charge pump circuit. The output terminal of the second charge pump circuit outputs a voltage value that is the result of adding a prescribed voltage value to the value of the first internal supply voltage applied to the charging terminal.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: August 6, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Shuichi Tsukada
  • Patent number: 8498148
    Abstract: A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: July 30, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Roger Klas Malmhall
  • Patent number: 8498150
    Abstract: A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: July 30, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Roger Klas Malmhall
  • Patent number: 8498149
    Abstract: A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: July 30, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Roger Klas Malmhall
  • Patent number: 8498175
    Abstract: A burst order control circuit includes a signal transmitting unit transmitting a second address as first and second signals in response to a mode signal and a first address, a signal delay unit delaying a read command, the first signal, and the second signal to generate a delayed read command, a first delayed signal, and a second delayed signal, a signal generating unit configured to generate a burst signal in response to the first address and generate first and second transmission signals in response to the delayed read command and the first and second delayed signals, and an output unit sorting and outputting a plurality of data in response to the burst signal, the first transmission signal, and the second transmission signal.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 30, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dong-Uk Lee
  • Patent number: 8493770
    Abstract: A semiconductor storage device includes a memory cell array including memory cells arranged at respective intersections between first wirings and second wirings. Each of the memory cells includes a rectifier element and a variable resistance element connected in series. A control circuit is configured to apply a first voltage to a selected first wiring and a second voltage lower than the first voltage to a selected second wiring so that a certain potential difference is applied to a selected memory cell positioned at an intersection between the selected first wiring and the selected second wiring. The control circuit performs a concurrent read operation to perform a read operation from plural memory cells concurrently by applying the first voltage to a plurality of the first wirings concurrently. It is possible to switch the number of the first wirings to be applied with the first voltage concurrently in the concurrent read operation.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: July 23, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Hosono, Yuri Terada, Takahiko Sasaki
  • Patent number: 8493780
    Abstract: A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: July 23, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Roger Klas Malmhall
  • Patent number: 8493785
    Abstract: A non-volatile memory device includes a memory cell array which includes a plurality of non-volatile memory cells, a plurality of word lines, and a plurality of bit lines. The memory device further includes an internal data output line for outputting data read from the bit lines of the memory array, and a page buffer operatively connected between a bit line of the memory cell array and the internal data output line. The page buffer includes a sense node which is selectively connected to the bit line, a latch circuit having a latch node which is selectively connected to the sense node, a latch input path which sets a logic voltage of the latch node in the programming mode and the read mode, and a latch output path which is separate from the latch input path.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Soo Lee, Young-Ho Lim, Hyun-Chul Cho, Dong-Hyuk Chae
  • Patent number: 8493779
    Abstract: A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: July 23, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Roger Klas Malmhall
  • Patent number: 8493777
    Abstract: A non-volatile current-switching magnetic memory element includes a bottom electrode, a pinning layer formed on top of the bottom electrode, and a fixed layer formed on top of the pinning layer. The non-volatile current-switching magnetic memory element further includes a tunnel layer formed on top of the pinning layer, a first free layer with a perpendicular anisotropy that is formed on top of the tunnel layer, a granular film layer formed on top of the free layer, a second free layer formed on top of the granular film layer, a cap layer formed on top of the second layer, and a top electrode formed on top of the cap layer.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 23, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod