Patents Examined by Allen L Parker
  • Patent number: 11257955
    Abstract: The disclosure provides a thin film transistor, an array substrate, and a method for fabricating the same. An embodiment of the disclosure provides a method for fabricating a thin film transistor, the method including: forming a gate, a gate insulation layer, and an active layer above an underlying substrate successively; forming a patterned hydrophobic layer above the active layer, wherein the hydrophobic layer includes first pattern components, and orthographic projections of the first pattern components onto the underlying substrate overlap with a orthographic projection of a channel area at the active layer onto the underlying substrate; and forming a source and a drain above the hydrophobic layer, wherein the source and the drain are located respectively on two sides of a channel area, and in contact with the active layer.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: February 22, 2022
    Assignees: BOE Technology Group Co., Ltd., Hefei Xinsheng Optoelectronics Technology Co., Ltd.
    Inventors: Qinghe Wang, Luke Ding, Leilei Cheng, Jun Bao, Tongshang Su, Dongfang Wang, Guangcai Yuan
  • Patent number: 11251289
    Abstract: A method includes forming a first active fin structure and a second active fin structure on a substrate. A dummy fin structure is formed on the substrate, the dummy fin structure being interposed between the first active fin structure and the second active fin structure. The dummy fin structure is removed to expose a first portion of the substrate, the first portion of the substrate being disposed directly below the dummy fin structure. A plurality of protruding features is formed on the first portion of the substrate. A shallow trench isolation (STI) region is formed over the first portion of the substrate, the STI region covering the plurality of protruding features, at least a portion of the first active fin structure and at least a portion of the second active fin structure extending above a topmost surface of the STI region.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: February 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Che-Cheng Chang, Po-Chi Wu, Chih-Han Lin, Horng-Huei Tseng
  • Patent number: 11251330
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 15, 2022
    Assignee: CRYSTAL IS, INC.
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Patent number: 11251195
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, the 3D memory device includes a stack structure. The stack structure includes a plurality of conductor layers and a plurality of insulating layers interleaved over a substrate. The plurality of conductor layers include a pair of top select conductor layers divided by a first top select structure and a pair of bottom select conductor layers divided by a bottom select structure. The first top select structure and the bottom select structure extend along a horizontal direction and are aligned along a vertical direction. A plurality of channel structures extend along a vertical direction and into the substrate and are distributed on both sides of the top select structure and the bottom select structure.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: February 15, 2022
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Zongliang Huo, Haohao Yang, Wei Xu, Ping Yan, Pan Huang, Wenbin Zhou
  • Patent number: 11233030
    Abstract: An electrical device with printed interconnects between packaged integrated circuit components and a substrate as well as a method for printing interconnects between packaged integrated circuit components and a substrate are disclosed. An electrical device with printed interconnects may include a dielectric layer forming a continuous surface between a substrate and a terminal face of an integrated circuit component. The electrical device may further include interconnects formed from a layer of material printed across the continuous surface formed by the dielectric layer to connect electrical terminals on the substrate to electrical terminals on the terminal face of the integrated circuit component.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 25, 2022
    Assignee: Rockwell Collins, Inc.
    Inventors: Brandon C. Hamilton, Kyle B. Snyder, Alan P. Boone
  • Patent number: 11227916
    Abstract: According to an embodiment, a semiconductor device 1 includes a semiconductor substrate 50 including an upper surface, a trench electrode 22 provided inside a trench 20 formed on the upper surface, and a trench insulating film 21 provided between the trench electrode 22 and the semiconductor substrate 50. The semiconductor substrate 50 includes a first semiconductor layer of a first conductivity type, a lower end of the trench electrode 22 reaching the first semiconductor layer, a deep layer 19 of a second conductivity type partially provided on the first semiconductor layer in contact with the trench insulating film 21, a second semiconductor layer of the second conductivity type provided on the first semiconductor layer and on the deep layer 19 in contact with the trench insulating film 21, and a third semiconductor layer of the first conductivity type provided on the second semiconductor layer above the deep layer 19.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 18, 2022
    Assignee: Renesas Electronics Corporation
    Inventor: Ryo Kanda
  • Patent number: 11223010
    Abstract: Techniques relate to forming a magnetic tunnel junction (MTJ). A synthetic antiferromagnetic reference layer is adjacent to a tunnel barrier layer. The synthetic antiferromagnetic reference layer includes a first magnetic layer, a second magnetic layer, and a reference spacer layer sandwiched between the first magnetic layer and the second magnetic layer. A magnetic free layer is adjacent to the tunnel barrier layer so as to be opposite the synthetic antiferromagnetic reference layer. The synthetic antiferromagnetic reference layer has a thickness of at least one of 3 nanometers (nm), 4 nm, and 3-4 nm.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 11, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guohan Hu, Younghyun Kim, Daniel C. Worledge
  • Patent number: 11211330
    Abstract: A system and method for efficiently creating layout for a standard cell are described. A standard cell to be used for an integrated circuit uses a full trench silicide strap as drain regions for a pmos transistor and an nmos transistor. Multiple unidirectional routes in metal zero are placed across the standard cell where each route connects to a trench silicide contact. Power and ground connections utilize pins rather than end-to-end rails in the standard cell. Additionally, intermediate nodes are routed in the standard cell with unidirectional routes.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: December 28, 2021
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Richard T. Schultz
  • Patent number: 11211400
    Abstract: A 3D flash memory device includes a substrate having a substantial planar surface. A plurality of active columns of semiconducting material is disposed above the substrate. Each of the plurality of active columns extends along a first direction orthogonal to the planar surface of the substrate. The plurality of active columns is arranged in a two-dimensional array. Each of the plurality of active columns may comprise multiple local bit lines and multiple local source lines extending along the first direction. Multiple channel regions are disposed between the multiple local bit lines and multiple local source lines. A word line stack wraps around the plurality of active columns. A charge-storage element is disposed between the word line stack and each of the plurality of active columns.
    Type: Grant
    Filed: November 29, 2019
    Date of Patent: December 28, 2021
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Min She, Qiang Tang
  • Patent number: 11205713
    Abstract: An embodiment is a method including forming a raised portion of a substrate, forming fins on the raised portion of the substrate, forming an isolation region surrounding the fins, a first portion of the isolation region being on a top surface of the raised portion of the substrate between adjacent fins, forming a gate structure over the fins, and forming source/drain regions on opposing sides of the gate structure, wherein forming the source/drain regions includes epitaxially growing a first epitaxial layer on the fin adjacent the gate structure, etching back the first epitaxial layer, epitaxially growing a second epitaxial layer on the etched first epitaxial layer, and etching back the second epitaxial layer, the etched second epitaxial layer having a non-faceted top surface, the etched first epitaxial layer and the etched second epitaxial layer forming source/drain regions.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 21, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Ching Lin, Chien-I Kuo, Wei Te Chiang, Wei Hao Lu, Li-Li Su, Chii-Horng Li
  • Patent number: 11195789
    Abstract: A bottom side interposer provides a structurally balanced chip carrier module to reduce thermal warp and increase package robustness. The bottom side interposer is attached to the bottom of a chip carrier which carries semiconductor chips on the top side of the chip carrier. The top side of the chip carrier typically includes a top side interposer between the semiconductor chips and the chip carrier. The bottom side interposer has a coefficient of thermal expansion (CTE) that is similar to the chips and top side interposer, or tailored to have a CTE intermediate to the chips and the chip carrier. Pads on the bottom side interposer may be plated or fitted with solder balls to complete the module so the module can be connected to a printed circuit board.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 7, 2021
    Assignee: International Business Machines Corporation
    Inventor: Mark K. Hoffmeyer
  • Patent number: 11189789
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a resistive random-access memory (RRAM) cell with recessed bottom electrode sidewalls to mitigate the effect of sidewall plasma damage. In some embodiments, the RRAM cell includes a lower electrode, a data storage element, and an upper electrode. The lower electrode includes a pair of recessed bottom electrode sidewalls respectively on opposite sides of the lower electrode. The data storage element overlies the lower electrode and includes a pair of storage sidewalls. The storage sidewalls are respectively on the opposite sides of the lower electrode, and the recessed bottom electrode sidewalls are laterally spaced from and laterally between the storage sidewalls. The upper electrode overlies the data storage element.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: November 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Tai Tseng, Shih-Chang Liu
  • Patent number: 11152312
    Abstract: A package structure includes an interposer, a die over and bonded to the interposer, and a Printed Circuit Board (PCB) underlying and bonded to the interposer. The interposer is free from transistors therein (add transistor), and includes a semiconductor substrate, an interconnect structure over the semiconductor substrate, through-vias in the silicon substrate, and redistribution lines on a backside of the silicon substrate. The interconnect structure and the redistribution lines are electrically coupled through the through-vias.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sao-Ling Chiu, Kuo-Ching Hsu, Wei-Cheng Wu, Ping-Kang Huang, Shang-Yun Hou, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 11139204
    Abstract: A semiconductor device may comprise a plurality of conductive lines and a plurality of contact plugs. The plurality of conductive lines may include a first conductive line a second conductive line. The plurality of contact plugs may include a first contact plug and a second contact plug. The first contact plug may have a first pillar portion and a first protruding portion protruding from a sidewall of the first pillar portion at a first depth, so as to be in alignment and contact with a sidewall of the first conductive line. The second contact plug may have a second pillar portion and a second protruding portion protruding from a sidewall of the second pillar portion at a second depth, so as to be in alignment and contact with a sidewall of the second conductive line.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: October 5, 2021
    Assignee: SK hynix Inc.
    Inventor: Nam Jae Lee
  • Patent number: 11139385
    Abstract: A method of providing contact surfaces that includes forming a first mask having an opening to a perimeter of a gate electrode, the first mask having a first protecting portion centrally positioned over the gate electrode within the perimeter, and a second protecting portion of the mask is positioned over metal semiconductor alloy surfaces of source and drain contact surfaces; and recessing exposed portions of metal semiconductor alloy and the gate electrode with an etch. In a following step, the method continues with filling the openings provided by recessing the gate perimeter of the gate electrode, recessing the metal semiconductor alloy adjacent to the gate structure, and the recessed gate electrode adjacent to the metal semiconductor alloy surface of the source and drain contact surfaces with a protecting dielectric material.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: October 5, 2021
    Assignee: International Business Machines Corporation
    Inventors: Junli Wang, Veeraraghavan S. Basker, Huiming Bu
  • Patent number: 11139457
    Abstract: An OLED, a method for fabricating the same, and a display device are disclosed. The OLED includes a first electrode, a first carrier transporting layer, an organic light emitting layer, a second carrier transporting layer, a second electrode, and a light extracting layer between the first electrode and the organic light emitting layer. The light extracting layer is made from a first carrier transporting material. The light extracting layer is formed between the first electrode and the organic light emitting layer at a light exit side of the OLED, and is formed from the first carrier transporting material. This increases the light extracting efficiency of the OLED. The light extracting layer further acts as the first carrier transporting layer, thus simplifying the structure of OLED, making OLED easy to fabricate, and efficiently controlling cost.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: October 5, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Xinxin Wang
  • Patent number: 11121227
    Abstract: A semiconductor memory device includes: a semiconductor substrate; a memory cell array disposed separately from the semiconductor substrate in a first direction; and first and second transistor arrays disposed on the semiconductor substrate. The semiconductor substrate includes a first region to a fourth region arranged in a second direction and a fifth region to an eighth region arranged in the second direction. These regions are each adjacent in a third direction. The memory cell array includes first conducting layers disposed in the first to fourth regions and second conducting layers disposed in the fifth to eighth regions. The first transistor array includes transistors connected to the plurality of first conducting layers via contacts disposed in the second region. The second transistor array includes transistors connected to the plurality of second conducting layers via contacts disposed in the seventh region.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: September 14, 2021
    Assignee: Kioxia Corporation
    Inventor: Tetsuaki Utsumi
  • Patent number: 11114549
    Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin and a second fin on a substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes a liner on a first sidewall of the first fin, and an insulating fill material on a sidewall of the liner and on a second sidewall of the first fin. The liner is further on a surface of the first fin between the first sidewall of the first fin and the second sidewall of the first fin.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: September 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ryan Chia-Jen Chen, Ming-Ching Chang, Yi-Chun Chen, Yu-Hsien Lin, Li-Wei Yin, Tzu-Wen Pan, Cheng-Chung Chang, Shao-Hua Hsu
  • Patent number: 11114405
    Abstract: A semiconductor package structure is provided. The semiconductor package structure includes a chip structure. The semiconductor package structure includes a first conductive structure over the chip structure. The first conductive structure is electrically connected to the chip structure. The first conductive structure includes a first transition layer over the chip structure; a first conductive layer on the first transition layer; and a second conductive layer over the first conductive layer. The first conductive layer is substantially made of twinned copper. A first average roughness of a first top surface of the second conductive layer is less than a second average roughness of a second top surface of the first conductive layer.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: September 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jung-Hua Chang, Po-Hao Tsai, Jing-Cheng Lin
  • Patent number: 11107765
    Abstract: A three-dimensional (3D) semiconductor device includes a stack structure including first and second stacks stacked on a substrate. Each of the first and second stacks includes a first electrode and a second electrode on the first electrode. A sidewall of the second electrode of the first stack is horizontally spaced apart from a sidewall of the second electrode of the second stack by a first distance. A sidewall of the first electrode is horizontally spaced apart from the sidewall of the second electrode by a second distance in each of the first and second stacks. The second distance is smaller than a half of the first distance.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 31, 2021
    Inventors: Sung-Hun Lee, Seokjung Yun, Chang-Sup Lee, Seong Soon Cho, Jeehoon Han