Patents Examined by Amanda Merlino
  • Patent number: 11493432
    Abstract: A flow cell assembly (16) for a fluid analyzer (14) that analyzes a sample (12) includes (i) a base (350) that includes a base window (350B); (ii) a cap (352) having a cap window (352B) that is spaced apart from the base window (350B); and (iii) a gasket (360) that is secured to and positioned between the base (350) and the cap (352), the gasket (360) having a gasket body (360A) that includes a gasket opening (360B). The gasket body (360A), the base (350) and the cap (352) cooperate to define a flow cell chamber (362). Moreover, an inlet passageway (366) extends into the flow cell chamber (362) to direct the sample (12) into the flow cell chamber (362); and an outlet passageway (368) extends into the flow cell chamber (362) to allow the sample (12) to exit the flow cell chamber (362).
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: November 8, 2022
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: David F. Arnone, Miles James Weida
  • Patent number: 11493439
    Abstract: An optical sensing system includes at least one electro-optical sensor having an adjustable field of view and at least one reflective member including a diffuse reflector surface positioned within the field of view of the at least one electro-optical sensor. The system also includes at least one controller configured to generate calibration parameters for the at least one electro-optical sensor based on data for at least one exposure detected by the electro-optical sensor when the diffuse reflector surface is within the field of view of the at least one electro-optical sensor. Methods for calculating the calibration parameters and for directly measuring reflectivity of objects in a scene with at least one electro-optical sensor are also disclosed herein.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 8, 2022
    Assignee: QinetiQ Inc.
    Inventor: Christopher John Sheppard
  • Patent number: 11480509
    Abstract: A particle sizing system is provided that includes an optical source generating a light beam for illuminating particles in a monitored volume, a plurality of light deflectors, each positioned to receive and deflect light scattered by the particles, and an image capture device collecting scattered light deflected by each light deflector. The image capture device outputs an image including a plurality of sub-images, each generated from the collected light deflected from a respective one of the light deflectors. Each particle is imaged as a spot in each sub-image, the plurality of spots associated with each particle corresponding to a plurality of scattering angles. The system also includes a processing unit configured to identify the spots associated with each particle in the sub-images, compute a spot parameter associated with each spot, and determine the size of each particle from its related spot parameters. A particle sizing method is also provided.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: October 25, 2022
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventor: Daniel Cantin
  • Patent number: 11467505
    Abstract: A lithographic apparatus (LA) applies a pattern to a substrate (W). The lithographic apparatus includes a height sensor (LS), a substrate positioning subsystem, and a controller configured for causing the height sensor to measure the height (h) of the substrate surface at locations across the substrate. The measured heights are used to control the focusing of one or more patterns applied to the substrate. The height h is measured relative to a reference height (zref). The height sensor is operable to vary the reference height (zref), which allows a wider effective range of operation. Specifications for control of the substrate height during measurement can be relaxed. The reference height can be varied by moving one or more optical elements (566, 572, 576, 504 and/or 512) within the height sensor, or moving the height sensor. An embodiment without moving parts includes a multi-element photodetector (1212).
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 11, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Hans Butler, Johannes Petrus Martinus Bernardus Vermeulen, Marinus Petrus Reijnders
  • Patent number: 11442000
    Abstract: Examples disclosed herein generally relate to an apparatus and method for detecting particles in a fluid. A system for imaging a particle includes an imaging device. The imaging device has a lens and a detector. A laser source is configured to emit a laser beam. The detector is configured to accumulate an intensity of an accumulated light that passes through the lens. The accumulated light is scattered by the particle. The particle passes through the laser beam over a given period.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mehdi Vaez-Iravani, Sankesha Bhoyar, Rachit Sharma, Guoheng Zhao
  • Patent number: 11435261
    Abstract: A method for analyzing distribution of tolerances on a freeform surface in an optical system. Establishes a freeform surface imaging optical system. A plurality of fields is selected, and maximum and minimum margins of wavefront errors in each field are defined. One freeform surface in one field is selected, an isolated point jumping model is established, and an isolated point is placed in different areas of the freeform surface of the one field. A local figure error with extreme values corresponding to each field is resolved, based on the maximum and minimum margins of wavefront errors, and the local surface tolerance distributions of the freeform surface in the plurality of fields are integrated together.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: September 6, 2022
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jun Zhu, Xiao-Fei Wu, Yu-Ting Deng, Guo-Fan Jin, Shou-Shan Fan
  • Patent number: 11408828
    Abstract: A system includes a plurality of modular subassemblies and a plate; wherein each modular subassembly comprises an enclosure and a plurality of optical components aligned to the enclosure, and each enclosure comprises a plurality of mounting structures; and wherein each modular subassembly is mechanically coupled to the plate by attachment of a mounting structure of the modular subassembly directly to a corresponding mounting structure located on the plate, such that by mechanically coupling each modular subassembly to the plate using the mounting structure of the modular subassembly and the corresponding mounting structure on the plate, adjacent modular subassemblies are aligned to each other upon such attachment, and wherein two of the modular subassemblies mechanically coupled to the plate are also attached to each other by mechanically coupling an alignment structure on one of the two modular subassemblies to a respective alignment structure on the other of the two modular subassemblies.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: August 9, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Wenyi Feng, Simon Prince, Peter Clarke Newman, Dakota Watson, Stanley S. Hong, Marco A. Krumbuegel, Yinghua Sun, Andrew James Carson, Merek C. Siu
  • Patent number: 11333602
    Abstract: A fluid measuring apparatus is provided with: an irradiating device configured to irradiate a fluid with light; a light receiving device configured to receive light scattered by the fluid; a detecting device configured to detect a backflow of the fluid on the basis of a received light signal of the light receiving device; and a calculating device configured to calculate estimated concentration information indicating a concentration of the fluid, on the basis of a detection result of the detecting device and the received light signal of the light receiving device. By this, even if the backflow temporarily occurs in the fluid, the fluid concentration can be accurately measured.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: May 17, 2022
    Assignees: PIONEER CORPORATION, NIKKISO COMPANY LIMITED
    Inventors: Kiyoshi Tateishi, Wataru Onodera, Tomoya Murakami, Akari Agata, Genki Adachi
  • Patent number: 11300527
    Abstract: A method for detecting lens cleanliness of a lens disposed in a flat-field optical path, the flat-field optical path including a light source, the lens, a camera, the light source is a narrow-band multispectral uniform surface light source, the camera's light-sensitive surface is disposed perpendicular to an optical axis of the lens and in the light position of the lens, the method including collecting the bright-field image data and dark-field image data in a plurality of spectra through the lens; for each pixel, performing a spectral differential flat-field correction operation to yield a plurality of spectral differentials; and displaying the spectral differentials in the form of a plurality of images to show a uniformity of each of the plurality of images, wherein a non-uniform area on each of the plurality of images is determined to have been caused by an impurity of the lens.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: April 12, 2022
    Assignee: MLOptic Corp.
    Inventors: Jiang He, Teresa Zhang, Wei Zhou, Peihong Bai
  • Patent number: 11300506
    Abstract: A droplet sensor has an optical cover with a curved surface that forms a part of a spheroid, a light source positioned at a first focal point of an ellipse, the first focal point facing the curved surface, and a photodetector positioned at a second focal point of the ellipse. The ellipse has an eccentricity determined such that the curved surface has an effective detection area that satisfies conditions for total internal reflection at an interface with a gas and that does not satisfy the conditions for total internal reflection at an interface with a liquid.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: April 12, 2022
    Assignee: MITSUMI ELECTRIC CO., LTD.
    Inventors: Yuya Kawasaki, Hideo Kurosawa
  • Patent number: 11255782
    Abstract: An electro-optical assembly, in particular a sensor assembly for detecting ambient light, includes a reflection surface, a lens body and an electro-optical component, in particular a light receiver. The component includes a depression having a main lens section, in particular a diverging lens section with a concave interior wall, and a converging lens section with a convex interior wall. The interior wall of the converging lens section is formed in such a way that the rays of the ray path which travel through the converging lens section to the electro-optical component hit the reflection surface in such way that the angle of incidence at the reflection surface is larger or the same as the critical angle of the total internal reflection at the reflection surface. In another aspect a method for detecting ambient light is described.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: February 22, 2022
    Assignee: BCS AUTOMOTIVE INTERFACE SOLUTIONS GMBH
    Inventor: Ulrich Backes
  • Patent number: 11248903
    Abstract: A three-dimension measurement device includes a moving device, a projecting device, a surface-type image-capturing device and a processing device. The moving device carries an object, and moves the object to a plurality of positions. The projecting device generates a first light to the object. The surface-type image-capturing device senses a second light generated by the object in response to the first light to generate a phase image on each of the positions. The processing device is coupled to the surface-type image-capturing device and receives the phase images. The processing device performs a region-of-interest (ROI) operation for the phase images to generate a plurality of ROI images. The processing device performs a multi-step phase-shifting operation for the ROI images to calculate the surface height distribution of the object.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: February 15, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chia-Hung Cho, Po-Yi Chang, Yi-Sha Ku, Kai-Ping Chuang, Chih-Hsiang Liu, Fu-Cheng Yang
  • Patent number: 11208229
    Abstract: A system, method, and apparatus for inspecting a label for proper application thereof. The system includes a label application apparatus and an inspection apparatus associated with said label application apparatus. The method includes inspecting a spent carrier web for the presence of labels, or portions thereof, that did not transfer to articles being labeled.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 28, 2021
    Assignee: Multi-Color Corporation
    Inventor: Robert L. Iadonisi
  • Patent number: 11181475
    Abstract: A gas analysis device includes a light source configured to emit laser beam to a target gas, a reflection body which reflects the laser beam, a light reception device that receives the laser beam reflected by the reflection body, a container which contains the light source and the light reception device, and an alignment mechanism that includes an insertion member inserted from outside of the container to inside of the container to move, along a plane intersecting with the irradiation direction of the laser beam, at least any one of the light source and the light reception device.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: November 23, 2021
    Assignee: YOKOGAWA ELECTRIC CORPORATION
    Inventors: Junichi Matsuo, Toshiki Miyasaka, Takuya Kawashima, Mamoru Hirono
  • Patent number: 11181485
    Abstract: A device comprises a housing, a detector for receiving solar irradiance and for providing a detector signal providing an indication of an amount of solar irradiance received by the detector and a shield transparent to at least part of the solar irradiance to be detected, the shield and the housing providing a detector space for housing at least part of the detector. The device further comprises a first light source for emitting light to the shield and a first light sensor arranged to receive light from the first light source, arranged to provide a first signal providing an indication for an amount of light received by the first light sensor. Particles will and reflect light back to the detector space. The reflected light is received by the light sensor. Hence, a signal generated by the sensor is an indication for pollution of the shield.
    Type: Grant
    Filed: July 4, 2017
    Date of Patent: November 23, 2021
    Assignee: OTT HydroMet B.V.
    Inventors: Xander Olivier Van Mechelen, Joachim Christian Jaus, Joop Mes
  • Patent number: 11162786
    Abstract: A three-dimensional surface roughness evaluating device wherein a two-dimensional laser displacement meter is disposed so that the width direction of the two-dimensional laser displacement meter coincides with a Y-axis direction, to be able to measure displacement data of coordinates in the Y-axis direction at fixed intervals, the measuring width of the two-dimensional laser displacement meter is at least two or more times mean width of the roughness profile elements RSm of elements of a measurement target, and a calculating device is configured to generate reference surface data of each coordinate by averaging in the Y-axis direction the displacement data acquired at fixed intervals in the X-axis direction by the two-dimensional laser displacement meter, and generate three-dimensional surface roughness data of the measurement target by subtracting the reference surface data of each coordinate from the displacement data of each X-Y plane coordinate.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: November 2, 2021
    Assignee: CHUGOKU MARINE PAINTS, LTD.
    Inventor: Hirohisa Mieno
  • Patent number: 11144745
    Abstract: An optical fingerprint sensing module attached to a base is provided. The base includes a first surface, a second surface and an opening extending through the first surface and the second surface. The optical fingerprint sensing module includes a fixing frame and a sensor integrated circuit (IC). The fixing frame is disposed in the opening of the base. The sensor IC is disposed in a receiving groove of the fixing frame and includes a plurality of photo sensors. The photo sensors receive light reflected from a user's finger through the opening of the base.
    Type: Grant
    Filed: April 14, 2019
    Date of Patent: October 12, 2021
    Assignee: EGIS TECHNOLOGY INC.
    Inventor: Pin-Yu Chen
  • Patent number: 11137340
    Abstract: [Object] To provide a particle detection sensor that is compact-and-flat designed and manufacturable at low cost. [Solution] A particle detection sensor (1) includes light transmissive resin (5) that encapsulates a light emitting element (3) and a light receiving element (6), and a reflective surface (7) that is arranged on the light transmissive resin (5) and reflects output light (8) radiated from the light emitting element (3) toward an incident light field area (10).
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 5, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshifumi Masuda, Akifumi Yamaguchi
  • Patent number: 11119034
    Abstract: The invention relates to a system (15) for observing a plate (10) including wells (20), including, for each well (20): a source (40) comprising a light-emitting diode (60) capable of producing a light ray, a pinhole (70), and a light integrator (65), an optical sensor (185) able to collect the optical signal from the well (20), the system (15) being such that: a ratio between the length and the average transverse dimension (Dt) of each light integrator (65) is greater than or equal to 2.2, or at least one optical axis is off-centered relative to the propagation line, the ratio between the length and the average transverse dimension of the integrator being greater than or equal to 1.5.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: September 14, 2021
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ETAUX ÉNERGIES ALTERNATIVES
    Inventor: Vincent Haguet
  • Patent number: 11099100
    Abstract: A device for measuring the optical effect of an ophthalmic lens, in particular a spectacle lens, includes a display system, an image acquisition system, and a computer unit. During measurement, the lens is arranged in a measurement volume of the device. The display system displays a test structure and the image acquisition system acquires image data of the test structure from multiple viewpoints using imaging optical paths which pass through the lens. The computer unit determines the three-dimensional shape of the lens on the basis of the image data and calculates an optical effect of the lens on the basis of its three-dimensional shape. A corresponding method and computer program are also disclosed.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: August 24, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventor: Carsten Glasenapp