Patents Examined by Andre? C. Stevenson
  • Patent number: 11967498
    Abstract: Exemplary methods of forming a silicon-and-carbon-containing material may include flowing a silicon-oxygen-and-carbon-containing precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region of the semiconductor processing chamber. The methods may include forming a plasma within the processing region of the silicon-and-carbon-containing precursor. The plasma may be formed at a frequency less than 15 MHz (e.g., 13.56 MHz). The methods may include depositing a silicon-and-carbon-containing material on the substrate. The silicon-and-carbon-containing material as-deposited may be characterized by a dielectric constant below or about 3.5 and a hardness greater than about 3 Gpa.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Bo Xie, Kang S. Yim, Yijun Liu, Li-Qun Xia, Ruitong Xiong
  • Patent number: 11967524
    Abstract: Exemplary methods of forming a semiconductor structure may include forming a first silicon oxide layer overlying a semiconductor substrate. The methods may include forming a first silicon layer overlying the first silicon oxide layer. The methods may include forming a silicon nitride layer overlying the first silicon layer. The methods may include forming a second silicon layer overlying the silicon nitride layer. The methods may include forming a second silicon oxide layer overlying the second silicon layer. The methods may include removing the silicon nitride layer. The methods may include removing the first silicon layer and the second silicon layer. The methods may include forming a metal layer between and contacting each of the first silicon oxide layer and the second silicon oxide layer.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Praket Prakash Jha, Shuchi Sunil Ojha, Jingmei Liang, Abhijit Basu Mallick, Shankar Venkataraman
  • Patent number: 11967526
    Abstract: A method includes depositing a dielectric cap over a gate structure. A source/drain contact is formed over a source/drain region adjacent to the gate structure. A top of the dielectric cap is oxidized. After oxidizing the top of the dielectric cap, an etch stop layer is deposited over the dielectric cap and an interlayer dielectric (ILD) layer over the etch stop layer. The ILD layer and the etch stop layer are etched to form a via opening extending though the ILD layer and the etch stop layer. A source/drain via is filled in the via opening.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Te-Chih Hsiung, Peng Wang, Jyun-De Wu, Huan-Just Lin
  • Patent number: 11967503
    Abstract: Provided are a method of depositing a thin film and a method of manufacturing a semiconductor device using the same, and the method of depositing a thin film uses a substrate processing apparatus including a chamber, a substrate support on which a substrate is mounted, a gas supply unit, and a power supply unit that supplies high-frequency and low-frequency power to the chamber, and includes: a step of mounting, on the substrate support, the substrate including a lower thin film deposited under the condition of a process temperature in a low temperature range; a step of depositing an upper thin film on the lower thin film under the condition of the process temperature in the low temperature range; and a step of treating a surface of the upper thin film under the condition of the process temperature in the low temperature range.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 23, 2024
    Assignee: WONIK IPS CO., LTD.
    Inventors: Su In Kim, Young Chul Choi, Chang Hak Shin, Min Woo Park, Ji Hyun Kim, Kyung Mi Kim
  • Patent number: 11967520
    Abstract: A method for making a high-voltage thick gate oxide, which includes depositing a pad silicon oxide on a silicon substrate and depositing a pad silicon nitride on the pad silicon oxide; performing shallow trench isolation photolithography, etching, silicon oxide filling and chemical mechanical polishing; sequentially depositing a mask silicon nitride and a mask silicon oxide on a silicon wafer; removing the mask silicon oxide and the mask silicon nitride in a high-voltage thick gate oxide region, and remaining the pad silicon nitride between two shallow trench isolations in the high-voltage thick gate oxide region; performing first thermal oxidation growth; removing the pad silicon nitride between the two shallow trench isolations in the high-voltage thick gate oxide region; performing second thermal oxidation growth to produce a high-voltage thick gate oxide.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: April 23, 2024
    Assignee: Hua Hong Semiconductor (Wuxi) Limited
    Inventor: Junwen Liu
  • Patent number: 11961741
    Abstract: A method for fabricating a layer structure having a target topology profile in a step which has a side face and a lateral face, includes processes of: (a) depositing a dielectric layer on a preselected area of the substrate under first deposition conditions, wherein the dielectric layer has a portion whose resistance to fluorine and/or chlorine radicals under first dry-etching conditions is tuned; and (b) exposing the dielectric layer obtained in process (a) to the fluorine and/or chlorine radicals under the first dry-etching conditions, thereby removing at least a part of the portion of the dielectric layer, thereby forming a layer structure having the target topology profile on the substrate.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 16, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Eiichiro Shiba, Yoshinori Ota, René Henricus Jozef Vervuurt, Nobuyoshi Kobayashi, Akiko Kobayashi
  • Patent number: 11955387
    Abstract: A method of fabricating a semiconductor device is disclosed. The method may include forming a parent pattern, forming an upper thin film on the parent pattern, forming a child pattern on the upper thin film, measuring a diffraction light from the parent and child patterns to obtain an intensity difference curve of the diffraction light versus its wavelength, and performing an overlay measurement process on the parent and child patterns using the diffraction light, which has the same wavelength as a peak of the intensity difference curve located near a peak of reflectance of the parent and child patterns, to obtain an overlay measurement value.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: April 9, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seongkeun Cho, Eunhee Jeang, Jihun Lee, Gyumin Jeong, Hyunjae Kang, Taemin Earmme
  • Patent number: 11938708
    Abstract: An economical, efficient, and effective formation of a high resolution pattern of conductive material on a variety of films by polymer casting. This allows, for example, quite small-scale patterns with sufficient resolution for such things as effective microelectronics without complex systems or steps and with substantial control over the characteristics of the film. A final end product that includes that high resolution functional pattern on any of a variety of substrates, including flexible, stretchable, porous, biodegradable, and/or biocompatible. This allows, for example, highly beneficial options in design of high resolution conductive patterns for a wide variety of applications.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: March 26, 2024
    Assignee: lowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Patent number: 11935785
    Abstract: A method of manufacturing a semiconductor structure includes: providing a base and a dielectric layer on the base, the base in an array region being provided with discrete capacitive contact plugs and a first conductive layer being formed on a top surface of the capacitive contact plugs; sequentially forming a conversion layer and a target layer on the first conductive layer and the dielectric layer, the target layer in the array region and the first circuit region being provided with first openings through the target layer; patterning the target layer in the array region as well as in the first circuit region and the second circuit region to form a second opening and a third opening; etching the conversion layer to form a first trench; forming a filling layer filling the first trench and removing the conversion layer to form a second trench filled by a second conductive layer.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: March 19, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Shuai Guo
  • Patent number: 11935795
    Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hung Wang, Tsung-Lin Lee, Wen-Chih Chiang, Kuan-Jung Chen
  • Patent number: 11926524
    Abstract: This work develops a novel microfluidic method to fabricate conductive graphene-based 3D micro-electronic circuits on any solid substrate including, Teflon, Delrin, silicon wafer, glass, metal or biodegradable/non-biodegradable polymer-based, 3D microstructured, flexible films. It was demonstrated that this novel method can be universally applied to many different natural or synthetic polymer-based films or any other solid substrates with proper pattern to create graphene-based conductive electronic circuits. This approach also enables fabrication of 3D circuits of flexible electronic films or solid substrates. It is a green process preventing the need for expensive and harsh postprocessing requirements for other fabrication methods such as ink-jet printing or photolithography. We reported that it is possible to fill the pattern channels with different dimensions as low as 10×10 ?m. The graphene nanoplatelet solution with a concentration of 60 mg/mL in 70% ethanol, pre-annealed at 75° C. for 3 h, provided ˜0.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 12, 2024
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Patent number: 11923202
    Abstract: The present disclosure, in some embodiments, relates to an integrated circuit structure. The integrated circuit structure includes a substrate and a hard mask over the substrate. The hard mask has sidewalls that form a first opening and a second opening exposing an upper surface of the substrate. A block mask is arranged on the hard mask and is set back from the sidewalls of the hard mask. Spacers are disposed over the block mask and have sidewalls that define a spacer opening exposing an upper surface of the block mask. The block mask extends from directly below the spacers to laterally past the sidewalls of the spacers.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ying Lee, Jyu-Horng Shieh
  • Patent number: 11916133
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a gate structure sandwiched between and in contact with a first spacer feature and a second spacer feature, a top surface of the first spacer feature and a top surface of the second spacer feature extending above a top surface of the gate structure, a gate self-aligned contact (SAC) dielectric feature over the first spacer feature and the second spacer feature, a contact etch stop layer (CESL) over the gate SAC dielectric feature, a dielectric layer over the CESL, a gate contact feature extending through the dielectric layer, the CESL, the gate SAC dielectric feature, and between the first spacer feature and the second spacer feature to be in contact with the gate structure, and a liner disposed between the first spacer feature and the gate contact feature.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Zhen Yu, Lin-Yu Huang, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11910612
    Abstract: A memory circuit includes: (i) a semiconductor substrate having a planar surface, the semiconductor substrate having formed therein circuitry for memory operations; (ii) a memory array formed above the planar surface, the memory array having one or more electrodes to memory circuits in the memory array, the conductors each extending along a direction substantially parallel to the planar surface; and (iii) one or more transistors each formed above, alongside or below a corresponding one of the electrodes but above the planar surface of the semiconductor substrate, each transistor (a) having first and second drain/source region and a gate region each formed out of a semiconductor material, wherein the first drain/source region, the second drain/source region or the gate region has formed thereon a metal silicide layer; and (b) selectively connecting the corresponding electrode to the circuitry for memory operations.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: February 20, 2024
    Assignee: SUNRISE MEMORY CORPORATION
    Inventors: Tianhong Yan, Scott Brad Herner, Jie Zhou, Wu-Yi Henry Chien, Eli Harari
  • Patent number: 11901436
    Abstract: A method comprises forming first and second fins each comprising alternately stacking first and second semiconductor layers; forming dummy gate structures over the first and second fins, and gate spacers on either side of the dummy gate structures; removing the dummy gate structures to form first and second gate trenches; removing the first semiconductor layers such that the second semiconductor layers are suspended in the first and second gate trenches; depositing a first dielectric layer around the second semiconductor layers and a second dielectric layer around the first dielectric layer; performing an ALD process to form a hard mask layer around the second dielectric layer, the ALD process comprising pulsing a first precursor for a first pulse time longer than about one second; patterning the hard mask layer; and etching a portion of the second gate dielectric layer in the second gate trench.
    Type: Grant
    Filed: June 6, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Jui Chiu, Yao-Teng Chuang, Kuei-Lun Lin
  • Patent number: 11894398
    Abstract: A photodetector, includes a photosensitive layer, a thin film transistor, and a sensing electrode, the sensing electrode connected to one of source/drain electrodes of the thin film transistor to transmit a signal generated by the photosensitive layer to the thin film transistor; wherein the photodetector further is a hydrogen barrier layer which is disposed between the photosensitive layer and the thin film transistor and is configured to inhibit hydrogen of the photosensitive layer from entering the thin film transistor. A method of manufacturing a photodetector is further provided.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: February 6, 2024
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Jiangbo Chen, Fanli Meng, Fan Li, Shuo Zhang, Da Li, Zeyuan Li, Yanzhao Li
  • Patent number: 11894270
    Abstract: Embodiments include an interconnect structure and methods of forming such an interconnect structure. In an embodiment, the interconnect structure comprises a first interlayer dielectric (ILD) and a first interconnect layer with a plurality of first conductive traces partially embedded in the first ILD. In an embodiment, an etch stop layer is formed over surfaces of the first ILD and sidewall surfaces of the first conductive traces. In an embodiment, the interconnect structure further comprises a second interconnect layer that includes a plurality of second conductive traces. In an embodiment, a via between the first interconnect layer and the second interconnect layer may be self-aligned with the first interconnect layer.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Kevin Lin, Sudipto Naskar, Manish Chandhok, Miriam Reshotko, Rami Hourani
  • Patent number: 11887995
    Abstract: A display panel is provided and includes a substrate and a plurality of pixel units. Each of the pixel units includes a color resist block, a light transmission area, and a non-light transmission area. An opening is defined at an edge of the color resist block in the non-light transmission area, and a through-hole area is defined in the opening. The opening includes a first sidewall near the light transmission area, a compensation member is disposed at an end of the first sidewall near a gap area, and a block angle structure is formed between the compensation member and the first sidewall.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: January 30, 2024
    Inventors: Shaomao Fang, Ilgon Kim, Bin Zhao, Xin Zhang, Jun Zhao
  • Patent number: 11869891
    Abstract: Non-planar integrated circuit structures having mitigated source or drain etch from replacement gate process are described. For example, an integrated circuit structure includes a fin or nanowire. A gate stack is over the fin or nanowire. The gate stack includes a gate dielectric and a gate electrode. A first dielectric spacer is along a first side of the gate stack, and a second dielectric spacer is along a second side of the gate stack. The first and second dielectric spacers are over at least a portion of the fin or nanowire. An insulating material is vertically between and in contact with the portion of the fin or nanowire and the first and second dielectric spacers. A first epitaxial source or drain structure is at the first side of the gate stack, and a second epitaxial source or drain structure is at the second side of the gate stack.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Jun Sung Kang, Kai Loon Cheong, Erica J. Thompson, Biswajeet Guha, William Hsu, Dax M. Crum, Tahir Ghani, Bruce Beattie
  • Patent number: 11859278
    Abstract: Methods of forming carbon polymer films are disclosed. Some methods are advantageously performed at lower temperatures. The substrate is exposed to a first carbon precursor to form a substrate surface with terminations based on the reactive functional groups of the first carbon precursor and exposed to a second carbon precursor to react with the surface terminations and form a carbon polymer film. Processing tools and non-transitory memories to perform the process are also disclosed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, Ahbijit Basu Mallick, Eugene Yu Jin Kong, Bo Qi