Patents Examined by Andrew L. Oltman
  • Patent number: 6899769
    Abstract: This invention is a method for forming a chemical conversion coating on ferrous metal substrates, the chemical solutions used in the coating and the articles coated thereby. By modifying and combining the features of two existing, but heretofore unrelated, coating technologies, a hybrid conversion coating is formed. Specifically, a molecular iron/oxygen-enriched intermediate coating, such as a dicarboxylate or phosphate, is applied to a ferrous substrate by a first oxidation. The intermediate coating pre-conditions the substrate to form a surface rich in molecular iron and oxygen in a form easily accessible for further reaction. This oxidation procedure is followed by a coloring procedure using a heated (about 120-220 F) oxidizing solution containing alkali metal hydroxide, alkali metal nitrate, alkali metal nitrite or mixtures thereof, which reacts with the iron and oxygen enriched intermediate coating to form magnetite (Fe3O4).
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: May 31, 2005
    Assignee: Birchwood Laboratories, Inc.
    Inventors: Keith N. Ravenscroft, William V. Block
  • Patent number: 6899770
    Abstract: A metal substrate is provided with a coating that (i) provides substantial corrosion resistance, (ii) makes it possible to shape the substrate by roll forming and similar light cold forming operations without the need for any oil or wax lubricant, and (iii) has good adhesion to subsequently applied paint. This is achieved by coating the metal substrate surface with an aqueous liquid composition that contains acrylate polymer resin, wax, and hexavalent chromium and then drying this coating into place on the surface to produce the desired dry coating.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: May 31, 2005
    Assignee: Henkel Corporation
    Inventors: Bruce H. Goodreau, Robert W. Miller, Thomas J. Prescott, Christopher A. Engel, Michael A. Murphy, James P. Bershas, John R. Pierce
  • Patent number: 6899956
    Abstract: This invention includes improvements to a method for forming a chemical conversion coating on ferrous metal substrates, to the chemical solutions used in the coating and to the articles coated thereby. A first oxidation applies a molecular iron/oxygen-enriched intermediate coating, such as a dicarboxylate or phosphate, to a ferrous substrate. A coloring procedure (a second oxidation) follows the first oxidation procedure, using a heated oxidizing solution that reacts with the iron and oxygen enriched intermediate coating to form magnetite (Fe3O4). The result is the formation of a brown or black finish. An appropriate rust preventive topcoat may seal the substrate. The finish affords protection, a degree of lubricity to aid assembly, break-in of sliding surfaces, provides anti-galling protection and an adherent base for paint finishes.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: May 31, 2005
    Assignee: Birchwood Laboratories, Inc.
    Inventors: William V. Block, Bryce D. Devine
  • Patent number: 6848832
    Abstract: In a rolling bearing put under a working circumstance in which water tends to intrude into lubricants, it has been known such a phenomenon that hydrogen ions formed by decomposition of the lubricants are adsorbed to raceway surfaces and accumulated as hydrogen atoms in highly strained sites (in the vicinity of the position for maximum shearing stress), to cause stress corrosion cracking type peeling. The present invention provides a rolling bearing in which an oxide layer of an iron/chromium oxide series is formed at a thickness of from 1 to 1000 nm to at least one of raceway surfaces of bearing rings or rolling contact surfaces of rolling elements and a manufacturing method thereof.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: February 1, 2005
    Assignee: NSK Ltd.
    Inventors: Hiromichi Takemura, Yasuo Murakami, Youichi Matumoto, Seiji Sato
  • Patent number: 6828033
    Abstract: Disclosed herein is a method of coating a substrate with a zinc dialkyldithiophosphate (ZDDP) material, comprising the steps of selecting a substrate which is reactive with said ZDDP material; providing an atmosphere containing said ZDDP material at a predetermined concentration; exposing said substrate to said atmosphere for a sufficient period of time and at a sufficient temperature, so as to cause said ZDDP material to form a layered substrate having a layer of a ZDDP derivative material thereon; and annealing said layered substrate.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: December 7, 2004
    Inventors: G. Michael Bancroft, Masoud Kasrai, Arthur Bzowski, Marina S. Fuller, Kathy De Jong
  • Patent number: 6800153
    Abstract: The diamter of &bgr;-titanium alloy wire is reduced by cold wire-drawing and the &bgr;-titanium alloy wire is subjected to heat treatment. The heat treatment comprises the first aging process for precipitation strengthening and the second aging process for removing processing strain. &bgr;-titanium alloy wire is heat-treated under the supply of tension at the second aging process.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: October 5, 2004
    Assignees: Terumo Corporation, Tokusen Kogyo Co., Ltd.
    Inventors: Naoki Ishii, Takashi Kaneko, Shin Sumimoto, Hideki Yamamoto, Ichiro Nagao
  • Patent number: 6794046
    Abstract: An article made of magnesium or its alloys, some or all of whose surface has a conversion coating, the conversion coating comprising MgO, Mn2O3 and MnO2 plus at least one oxide from the group consisting of vanadium, molybdenum and tungsten; and also a process for producing such an article, and its use.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: September 21, 2004
    Assignee: AHC Oberflachenechnik GmbH & Co. OHG
    Inventors: Peter Kurze, Ulrike Kruger, Marco Kohler, Dora B{overscore (a)}nerjee
  • Patent number: 6780256
    Abstract: An aqueous solution and method for applying the solution to a metal surface form a zinc phosphate coating on the metal surface. The zinc phosphate coating minimizes corrosion and improves adhesion of subsequently coated materials such as sealants and paints. The solution of the composition and method of application consume free acidity otherwise left on the metal surface, and obviate the need for subsequent rinsing or extensive drying or stoving operations. The composition includes an aqueous solution including water, a zinc source, phosphoric acid, a polyhydric compound (preferably pentaerythritol), a metal salt, and optionally, an oxidizer.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: August 24, 2004
    Assignee: Bulk Chemicals, Inc.
    Inventor: José B. Rivera
  • Patent number: 6773516
    Abstract: An aqueous acidic solution for forming a rare earth element containing conversion coating on the surface of a metal, said solution being chromate-free and including effective quantities of at least one rare earth element (as herein defined) containing species, an oxidant and at least one accelerator, comprising a metal selected from Groups VA and VIA of the Periodic Table.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: August 10, 2004
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Simon Gerard Hardin, Klaus Werner Wittel, Anthony Ewart Hughes, Karen Joy Hammon Nelson
  • Patent number: 6773515
    Abstract: A method for forming an NiCr seed layer based bottom spin valve sensor element having a synthetic antiferromagnet pinned (SyAP) layer and a capping layer comprising either a single specularly reflecting nano-oxide layer (NOL) or a bi-layer comprising a non-metallic layer and a specularly reflecting nano-oxide layer and the sensor element so formed. The method of producing these sensor elements provides elements having higher GMR ratios and lower resistances than elements of the prior art.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: August 10, 2004
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Simon H. Liao, Masashi Sano, Kiyoshi Noguchi, Kochan Ju, Cheng T. Horng
  • Patent number: 6770154
    Abstract: The sputter target includes a tantalum body having tantalum grains formed from consolidating tantalum powder and a sputter face. The sputter face has an atom transport direction for transporting tantalum atoms away from the sputter face for coating a substrate. The tantalum grains have at least a 40 percent (222) direction orientation ratio and less than a 15 percent (110) direction orientation ratio in an atom transport direction away from the sputter face for increasing sputtering uniformity.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: August 3, 2004
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Holger J. Koenigsmann, Paul S. Gilman
  • Patent number: 6767413
    Abstract: The present invention provides a non-chromium metal surface treating agent which has excellent adhesion with a coating and corrosion resistance, and also has excellent workability and stability. A metal surface treating agent comprising a water-soluble zirconium compound, a water-soluble or water-dispersant acrylic resin and a water-soluble or water-dispersant thermosetting crosslinking agent, wherein said water-soluble zirconium compound has a zirconium content of 500 to 15000 ppm on a mass basis, said acrylic resin has an acid value of solid matter of 150 to 740 mgKOH/g, a hydroxyl value of solid matter of 24 to 240 mgKOH/g, and a solid matter content of 500 to 30000 ppm on a mass basis, and said thermosetting crosslinking agent has a solid matter content of 125 to 7500 ppm on a mass basis.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: July 27, 2004
    Assignee: Nippon Paint Co., Ltd.
    Inventor: Satoshi Nishimura
  • Patent number: 6764553
    Abstract: Corrosion resistant, hydrophilic coatings on the surface of aluminum and aluminum alloys may be formed using aqueous compositions containing fluorometallates such as H2TiF6 or H2ZrF6 and vanadium compounds such as decavanadates. To minimize the odor evolved from the conversion coatings it is preferred for a specified oxide, hydroxide, carbonate, or alkoxide to also be present in or added to the aqueous composition.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: July 20, 2004
    Assignee: Henkel Corporation
    Inventor: Shawn E. Dolan
  • Patent number: 6761777
    Abstract: The present invention is directed to a corrosion and erosion resistant High Chromium, Nitrogen bearing alloy, comprising the following composition in wt. %: 28-48 chromium, 0.01-0.7 nitrogen, 0.5-30 manganese, 0.01-5 boron, 0.3-2.5 carbon, up to 0.01-25 cobalt plus nickel, up to 0.01-5 silicon, up to 0.01-8 copper, up to 0.01-6 molybdenum, up to 2% of each one selected from group consisting of zirconium, vanadium, cerium, titanium, tungsten, niobium, aluminum, calcium, and rare earth elements with the balance being essentially iron and other trace elements or inevitable impurities. The alloy has a microstructure comprising hypoeutectic, eutectic, chromium carbides, boride and nitrides in the austenitic matrix, saturated with nitrogen with virtually no secondary carbides and nitrides.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: July 13, 2004
    Inventor: Roman Radon
  • Patent number: 6758917
    Abstract: A method for forming a chromium-rich layer on the surface of a nickel alloy workpiece containing chromium includes heating the workpiece to a stable temperature of about 1100° C., and then exposing the workpiece to a gaseous mixture containing water vapor and one or more non-oxidizing gases for a short period of time. The process conditions are compatible with high temperature annealing and can be performed simultaneously with, or in conjunction with, high temperature annealing.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: July 6, 2004
    Assignee: Babcock & Wilcox Canada Ltd.
    Inventors: Peter J. King, David M. Doyle
  • Patent number: 6758916
    Abstract: A chromium free conversion coating at least equivalent in corrosion protective quality to conventional chromate conversion coatings can be formed on metals, particularly cold rolled steel, by a dry-in-place aqueous acidic liquid that preferably has a pH value between 0.5 and 5.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: July 6, 2004
    Assignee: Henkel Corporation
    Inventor: David R. McCormick
  • Patent number: 6759134
    Abstract: A process for forming a metallic article having a black ornamental surface includes the steps of metallurgically providing an alloy containing between about 51 and 70 about percent by weight of titanium, between about 3 and about 17 percent by weight of niobium, and the balance of a metal selected from the group consisting of zirconium, tantalum, molybdenum, hafnium zirconium, chromium, and mixtures thereof. The alloy is then casted and/or metal worked into a workpiece having a desired geometry and surface texture. The workpiece thereof is then baked in a kiln or oven in a substantially air atmosphere of between about 450 and about 850 degrees C. for a period of between about one and about 29 minutes. Resultant of such baking, there is produced a durable black surface layer consisting substantially of an oxide of niobium which is adhered to the substrate of the workpiece which remains unoxidized.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: July 6, 2004
    Inventor: Edward Rosenberg
  • Patent number: 6755917
    Abstract: An aqueous acidic solution for forming a conversion coating on the surface of a metallic material, said solution containing at least one rare earth element (as herein defined) containing species, an accelerator additive selected from the group consisting of metals of Group IB, IIB, IVA, VA, VIA and VIII of the Periodic Table, a peroxidic species and at least one acid selected from the group of mineral acids, carboxylic acids, sulphonic acids and phosphonic acids, wherein said solution contains no more than 20 mg/liter each of fluoride and of phosphate, and the solution is essentially free of chromate.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: June 29, 2004
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Simon Gerard Hardin, Klaus Werner Wittel, Anthony Ewart Hughes, Karen Joy Hammon Nelson
  • Patent number: 6755921
    Abstract: The present inventions offer a nickel-based single crystal alloy which has a high strength, is easy in conducting the solution heat treatment, hardly gives a harmful phase and is resistant to corrosion at high temperature. A nickel-based single crystal alloy is offered where the composition consists of 7-15 of Co, 0.1-4 of Cr, 1-4 of Mo, 4-7 of W, 5.5-6.5 of Al, 5-7 of Ta, 4-5.5 of Re, 0-0.5 each of Hf and V, and 0-2 each of Ti and Nb in terms of % by weight and residual part substantially consists of Ni wherein said alloy may contain unavoidable impurities.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: June 29, 2004
    Assignee: National Research Institute for Metals
    Inventors: Toshiharu Kobayashi, Yutaka Koizumi, Shizuo Nakazawa, Hiroshi Harada, Toshihiro Yamagata
  • Patent number: 6755918
    Abstract: The present invention discloses a method for treating magnesium alloys by chemical conversion. This method can improve corrosion resistance and paint adhesion of magnesium alloys, and produces an admirable appearance. Additionally, the method of the present invention is more environmentally friendly than conventional processes, because non-chromate chemicals are used in acid pickling and chemical conversion. Furthermore, the method of the present invention can be widely applied to the magnesium alloys manufactured by casting and rolling.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: June 29, 2004
    Inventors: Ming-Der Ger, Kuang-Hsuan Yang, Yuh Sung, Wen-Hwa Hwu, Yu-Chuan Liu