Patents Examined by Andrew L. Oltman
  • Patent number: 6569263
    Abstract: There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: May 27, 2003
    Assignee: The Regents of the University of California
    Inventors: Donald W. Brown, Arun S. Wagh
  • Patent number: 6565671
    Abstract: The present invention relates to a surface-treated steel sheet coated with a chromate layer having excellent corrosion resistance, fuel resistance and seam weldability, and a chromate solution used for preparing the surface-treated steel sheet. Specifically, the chromate solution of the present invention comprises (a) a main solution prepared by adding to a chrome solution having 0.4 to 0.8 of trivalent chrome composition and 7 to 50 g/l of dissolved chrome, on the basis of the chrome in the chrome solution, 50 to 80 w % of phosphate, 20 to 40 w % of fluoric acid, 300 to 2000 w % of colloidal silica, 5 to 15 w % of sulfuric acid, and 25 to 40 w % of sodium phosphate, and (b) a hardener solution containing added epoxy silane or glycidyl silane of 2 to 10 w % on the basis of total hardener solution, the pH of which is controlled between 2 and 3, wherein 10 to 60 w % of the hardener solution being added to the main solution.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: May 20, 2003
    Assignee: Pohang Iron & Steel Co., Ltd.
    Inventors: Jae-Ryung Lee, Sam-Kyu Chang, Sang-Geol Noh, Soo-Hyoun Cho
  • Patent number: 6565672
    Abstract: An article protected by a protective coating system is fabricated by providing an article substrate having a substrate surface; and thereafter producing a protective coating having a flattened, pre-oxidized protective-coating surface on the substrate surface by depositing a protective coating on the substrate surface, the protective coating having a protective-coating surface, processing the protective coating to achieve a flattened protective-coating surface, and controllably oxidizing the protective-coating surface. A thermal barrier coating may be deposited overlying the flattened, pre-oxidized protective coating.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Ramgopal Darolia
  • Patent number: 6562149
    Abstract: The invention concerns processes and solutions for the preliminary treatment of copper surfaces which are subsequently to be firmly bonded to organic substrates. The solution is used, in particular, for firmly bonding laminated multilayered printed circuit boards and for firmly bonding resists to the copper surfaces of printed circuit boards.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: May 13, 2003
    Assignee: Atotech Deutschland GmbH
    Inventors: Udo Grieser, Heinrich Meyer
  • Patent number: 6562148
    Abstract: In a method for the pretreatment of work pieces having a surface made of aluminium or aluminium alloys, for non-cutting shaping and/or the connection by welding or gluing to work pieces as well as for a subsequent permanent corrosion-preventing treatment, the work pieces are subjected to a three-stage treatment by a) rinsing with an aqueous, acidic solution containing a mineral acid, b) rinsing with water, c) bringing them into contact with an aqueous, acidic solution which is chromium-free and polymer-free and contains Ti and Zr as complex fluorides in a weight ratio of Ti:Zr of 2:1 to 1:2, in such a way that, after the subsequent drying off, a layer weight of 2 to 15 mg/m2 (calculated as Ti/Zr metal) results, wherein depending on the type of application, solutions having different concentrations and different pH values are used.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: May 13, 2003
    Assignees: Chemetall GmbH, Bayerische Motorenwerke AG
    Inventors: Thomas Wendel, Klaus Bittner, Hardy Wietzoreck, Peter Müller
  • Patent number: 6554916
    Abstract: A treatment method for hydrophilicity for a heat exchanger which can maintain the deodorizing property and hydrohilicity even after a long-time use, and a heat exchanger thus treated for hydrophilicity by said method are provided.
    Type: Grant
    Filed: May 12, 2001
    Date of Patent: April 29, 2003
    Assignees: Nippon Paint Co., Ltd., Showa Denko K.K.
    Inventors: Masahiro Kojima, Takashi Sudo, Shintaro Nakagawa, Masahiko Matsukawa, Toshio Inbe, Tatsuo Yoshida
  • Patent number: 6551417
    Abstract: Tri-cation zinc phosphate conversion coating compositions are disclosed. The compositions include a phosphate component, ions of nickel, manganese, and zinc, and a glycerophosphate component, such as disodium glycerophosphate. Coatings formed from these compositions provide improved corrosion resistance to metal substrates and provide a uniform layer for the application of paint finishes. Processes of making and using these compositions are also disclosed.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: April 22, 2003
    Assignee: GE Betz, Inc.
    Inventors: Edward A. Rodzewich, Bruce V. Haberle, Joseph E. Murphy
  • Patent number: 6544353
    Abstract: The invention relates to a method of treating a liquid gallium or gallium alloy surface for prolonged use as a liquid mirror. The method of the invention comprises the steps of (a) contacting the surface of liquid gallium or gallium alloy with an aqueous solution of a halogenic acid to cause dissolution of any gallium oxide present on the surface, thereby obtaining an oxide-free liquid gallium or gallium alloy surface covered with a layer of the acid solution; (b) adding to the acid solution an aqueous solution of a surfactant present in an amount to form a single bimolecular layer of surfactant at an interface between the liquid gallium or gallium alloy and water; and (c) allowing a uniform passivating oxide layer to gradually form on the oxide-free liquid gallium or gallium alloy surface, the passivating oxide layer having surface irregularities smaller than 40 nm.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: April 8, 2003
    Assignee: Universite Laval
    Inventors: Laurent Bonneviot, Ermanno F. Borra
  • Patent number: 6544361
    Abstract: The present invention relates to a method for making flat, thin elements which consist of: producing a zirconium alloy blank also containing, besides the inevitable impurities, 0.8 to 1.3% of niobium, 1100 to 1800 ppm of oxygen, and 10 to 35 ppm of sulfur; carrying out a &bgr; hardening and hot rolling to obtain a blank and performing on it at least three cold rolling passes with intermediate annealing heat treatments. One of the intermediate heat treatments is performed for a duration of at least 5 hours at a temperature less than 560° C. and all the optional treatments subsequent to the long treatment are carried out at a temperature of less than 620° C. for not more than 15 minutes.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: April 8, 2003
    Assignees: Framatome ANP, Cezus
    Inventors: Jésus Diz, Gérard Bunel
  • Patent number: 6540844
    Abstract: A method for forming a sol-gel on a metal surface to provide an interface for promoting adhesion between the metal surface and an organic resin involves application of at least one metal alkoxide compound having at least one labile sulfur atom, and at least one metal alkoxide compound having at least one reactive moiety which is capable of bonding with an organic resin. The metal alkoxide compound having at least one labile sulfur atom is capable of bonding to various metal surfaces, including surfaces of noble metals, such as gold, by a sulfur-metal linkage with the metal surface. The metal alkoxide compound having at least one labile sulfur atom reacts with the metal alkoxide compound having at least one reactive moiety which is capable of bonding with the organic resin to form a sol-gel which bonds to the surface of the metal, and which includes reactive moieties which are capable of bonding with an organic resin.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 1, 2003
    Assignee: Corning Incorporated
    Inventor: Russell A. Crook
  • Patent number: 6540851
    Abstract: An alloy comprising tantalum and silicon is described. The tantalum is the predominant metal present. The alloy also has a uniformity of tensile strength when formed into a wire, such that the maximum population standard deviation of tensile strength for the wire is about 3 KSI for an unannealed wire at finish diameter and about 2 KSI for an annealed wire at finish diameter. Also described is a process of making a Ta—Si alloy which includes reducing a silicon-containing solid and a tantalum-containing solid into a liquid state and mixing the liquids to form a liquid blend and forming a solid alloy from the liquid blend. Another process of making a Ta—Si alloy is described which involves blending powders containing tantalum or an oxide thereof with powders containing silicon or a silicon-containing compound to form a blend and then reducing the blend to a liquid state and forming a solid alloy from the liquid state.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: April 1, 2003
    Assignee: Cabot Corporation
    Inventors: Louis E. Huber, Jr., Christopher A. Michaluk
  • Patent number: 6540843
    Abstract: A method of coating a catalyst layer on a metallic substrate includes preparing a metal oxide and binder slurry to coat onto a metal surface and forming a catalytic layer over the slurry coated surface. The slurry may be made from a binder containing, for example, fully dissolved alumina in the presence of excess nitric acid. The binder may then be mixed with a metal oxide mixture to form the metal oxide-binder slurry. The metal oxide mixture may contain aluminum oxide or partially hydrated aluminum oxide. The metal oxide-binder slurry can be used to coat the surfaces of a variety of metals such as aluminum, titanium, nickel, cobalt, chromium, iron, copper, etc., or their alloys that include brass, as well as stainless steel with or without Al as a component.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: April 1, 2003
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Norman Van Den Bussche
  • Patent number: 6537388
    Abstract: Chromium, silicon, aluminum, and optionally manganese are diffused onto the surface of a high temperature alloy product, to provide a coating having improved resistance to carburization and catalytic coke formation and smoother surfaces for high temperature hydrocarbon environments. Preferably, a first layer of chromium or chromium and silicon is deposited and diffusion heat-treated and covered by the second layer of aluminum or aluminum-silicon. The inner layer contains a minimum of 8 weight percent chromium above that contained in the substrate alloy. The outer layer contains a minimum of 20 weight percent aluminum at the coating surface. The coating system is then aged to yield the improved coating that has 60 to 90 weight percent chromium at the surface. Each layer or the combination of layers is diffusion heat treated to cause a diffusion depth ranging from 0.006 inch (0.1524 millimeter) to 0.030 inch (0.762 millimeter) with targeted 0.012 inch (0.3048 millimeter) to 0.015 inch (0.3810 millimeter).
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: March 25, 2003
    Assignee: Alon, Inc.
    Inventors: Kim A. Wynns, George T. Bayer
  • Patent number: 6537387
    Abstract: A process for the corrosion protection of steel strips coated with zinc or zinc alloy, characterised in that the steel strips coated with zinc or zinc alloy are brought into contact with an aqueous treatment solution having a pH within the range of from 1.5 to 3.5, which contains 1 to 20 g/l manganese(II) ions and 1 to 150 g/l phosphate ions, and the solution is dried without intermediate rinsing. Optionally the solution may contain in addition: up to 10 g/l zinc ions, up to 10 g/l nickel ions, up to 20 g/l titanium ions, up to 50 g/l silicon ions in the form of silicon compounds, up to 30 g/l fluoride ions, up to 150 g/l of one or more polymers or copolymers of polymerisable carboxylic acids selected from acrylic acid, methacrylic acid and maleic acid, and esters thereof with alcohols having 1 to 6 carbon atoms. The present invention also relates to the correspondingly-treated metal strips.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: March 25, 2003
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventor: Joerg Riesop
  • Patent number: 6531000
    Abstract: The present invention provides a rolling bearing in which an oxide layer of an iron/chromium oxide series is formed at a thickness of from 1 to 1000 nm to at least one of raceway surfaces of bearing rings or rolling contact surfaces of rolling elements and a manufacturing method thereof. The oxide layer can inhibit hydrogen formed by decomposition of water incorporated in the lubricants from intruding into the matrix of the bearing members, thereby preventing early peeling for the raceway surfaces of the bearing rings or the rolling contact surfaces of the rolling elements and, thus, greatly improving the rolling life. The oxide layer can be formed simply by merely tempering the bearing member and then applying a re-heating treatment in air at a temperature lower than the tempering temperature.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: March 11, 2003
    Assignee: NSK Ltd.
    Inventors: Hiromichi Takemura, Yasuo Murakami, Youichi Matumoto, Seiji Sato
  • Patent number: 6524402
    Abstract: A passivation method for the metallic surface of a nickel and iron-based superalloy which is used as the constituent material of reactor or furnace walls is described, in which the superalloy is coated on at least one of its surfaces which comes into contact with a corrosive atmosphere containing either hydrocarbons at high temperature or containing oxidizing gases at high temperature, with at least two successive layers resulting from successive chemical vapour deposition of its one or more constituent elements, the external phase, resulting from chemical vapour deposition of at least one silicon compound and the layer(s) deposited between the superalloy surface, and the external layer resulting from chemical vapour deposition of at least one of a metal or metalloid.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: February 25, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Paul Broutin, Pascal Nisio, François Ropital
  • Patent number: 6524403
    Abstract: A non-chrome containing composition and process are disclosed for enhancing the corrosion resistance of zinc or zinc alloy surfaces. The composition comprises a source of titanium ions or titanates, an oxidant and fluorides or complex fluorides. The composition also preferably comprises an organic acid and/or a Group II metal compound, preferably a Group II metal chloride.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: February 25, 2003
    Inventors: Ian Bartlett, Ernest Long, Anthony Rowan
  • Patent number: 6521175
    Abstract: A superalloy has a composition of, in weight percent, from about 16.0 percent to about 22.4 percent cobalt, from about 6.6 percent to about 14.3 percent chromium, from about 1.4 percent to about 3.5 percent tantalum, from about 1.9 percent to about 4.0 percent tungsten, from about 1.9 percent to about 3.9 percent molybdenum, from about 0.03 percent to about 0.10 percent zirconium, from about 0.9 percent to about 3.0 percent niobium, from about 2.4 percent to about 4.6 percent titanium, from about 2.6 percent to about 4.8 percent aluminum, from 0 to about 2.5 percent rhenium, from about 0.02 percent to about 0.10 percent carbon, from about 0.02 percent to about 0.10 percent boron, balance nickel and minor amounts of impurities. The superalloy is advantageously utilized in aircraft gas turbine disks.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: February 18, 2003
    Assignee: General Electric Co.
    Inventors: David P. Mourer, Eric S. Huron, Kenneth R. Bain, Enrique E. Montero, Paul L. Reynolds, John J. Schirra
  • Patent number: 6521052
    Abstract: A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 18, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Sharon E. Lowther, Terry L. St. Clair
  • Patent number: 6521053
    Abstract: A substrate is protected by first providing the substrate, and applying a ceramic coating overlying and bonded to the substrate. The ceramic coating is formed of an open-cell solid foam of ceramic cell walls having an interconnected intracellular volume therebetween which is filled at least in part with a metallic alloy. The ceramic coating has an exposed surface remote from the substrate. The exposed surface of the ceramic coating is heated to an exposure temperature such that at least some of the metallic alloy is lost from the intracellular volume.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: February 18, 2003
    Assignee: General Electric Co.
    Inventors: Richard John Grylls, Curtiss Mitchell Austin