Patents Examined by Anita Alanko
  • Patent number: 9396961
    Abstract: The embodiments herein relate to methods and apparatus for etching a recessed feature in dielectric material. In various embodiments, a recessed feature is formed in two etching operations. The first etching operation partially etches the features and may take place in a reactor configured to produce a capacitively coupled plasma. The first etching operation may end before the underlying semiconductor material experiences substantial damage due to penetration of ions through the dielectric atop the semiconductor material. The second etching operation may take place in a reactor configured to produce an inductively coupled plasma. Both the first and second etching operations may themselves be multi-step, cyclic processes.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: July 19, 2016
    Assignee: Lam Research Corporation
    Inventors: Reza Arghavani, Shashank C. Deshmukh, Eric A. Hudson, Tom Kamp, Samantha Tan, Gerardo Adrian Delgadino
  • Patent number: 9384949
    Abstract: A gas-flow control method for a plasma apparatus is provided. The gas-flow control method includes mounting a first adjusting mechanism on a gas-distribution plate. The gas-distribution plate includes a number of exhaust openings, and the exhaust openings in a first area of the gas-distribution plate are masked by the first adjusting mechanism. The gas-flow control method also includes exhausting a gas from the exhaust openings in a first unmasked area of the gas-distribution plate, and the gas passing through the first adjusting mechanism into a plasma chamber. The gas-flow control method further includes generating an electric field to excite the gas in the plasma chamber into plasma.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: July 5, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Zi-Neng Huang, Chang-Sheng Lee, Shen-Chieh Liu, Cherng-Chang Tsuei
  • Patent number: 9377616
    Abstract: A method of manufacturing a support plate including: providing a layer of a first material; providing, using an applied voltage, a layer of a second material on a surface of the layer of the first material; and exposing a part of the surface by removing a part of the layer of the second material.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 28, 2016
    Assignee: Amazon Technologies, Inc.
    Inventors: Daniel Figura, Geert Martens, Romaric Mathieu Massard, Bokke Johannes Feenstra
  • Patent number: 9371427
    Abstract: A pattern is formed by forming a first pattern on a first film, forming a block copolymer layer including a first block chain and a second block chain on the first pattern, forming a second pattern, forming a second film on the second pattern, selectively removing the second film until the second pattern is exposed, forming a third pattern, and processing the first film using the third pattern as a mask. The second pattern is formed by microphase-separating the block copolymer layer, and removing the first block chain or the second block chain. The second film is formed by applying a material having an etch rate that is less than an etch rate of a material of the first pattern and the second pattern. The third pattern is formed by selectively removing the second pattern and the first pattern using the second film as a mask.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: June 21, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsutoshi Kobayashi, Yusuke Kasahara, Hiroki Yonemitsu, Hitoshi Kubota, Ayako Kawanishi
  • Patent number: 9373864
    Abstract: The method for fabricating a lithium microbattery is performed from a stack of layers successively including: a first layer made from a first material, a second layer made from a second material, a solid electrolyte layer and a first electrode. The method further includes etching to form a first pattern made from the first material and a second pattern made from the second material, the second pattern defining a covered area and an uncovered area of the electrolyte layer. The uncovered area is then etched using the second pattern as etching mask. After etching of the first pattern, a lithium-based layer is formed on the second pattern, the lithium-based layer and the second pattern forming a second lithium-based electrode.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: June 21, 2016
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVE
    Inventors: Sami Oukassi, Arnaud Bazin
  • Patent number: 9359212
    Abstract: A copper foil for producing graphene including Cu having a purity of 99.95% by mass or more.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: June 7, 2016
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yoshihiro Chiba, Toshiyuki Ono
  • Patent number: 9355863
    Abstract: A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: May 31, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Seung Park, Mikhail Korolik, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9353313
    Abstract: Illustrative embodiments of microdevices and methods of manufacturing such microdevices are disclosed. In at least one illustrative embodiment, a method of manufacturing one or more microdevices may include forming a liquid dispersion containing cellulose nanocrystals (CNC), depositing the liquid dispersion containing the CNC on a substrate, drying the liquid dispersion containing the CNC to form a solid film on the substrate, where the liquid dispersion contains a sufficient concentration of CNC to form a continuous solid film having a controlled microstructure, and processing the solid film to form the one or more microdevices on the substrate.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: May 31, 2016
    Assignees: Auburn University, Clemson University
    Inventors: William Robert Ashurst, Virginia A. Davis, Christopher L. Kitchens
  • Patent number: 9348219
    Abstract: Provided herein are methods for depositing a spin-on-glass composition over an imprinted resist; curing the spin-on-glass composition to form a cured spin-on-glass composition; and forming a patterned mask by etching the cured spin-on-glass composition, the resist, and an underlying mask composition, wherein the patterned mask comprises features of the cured spin-on-glass composition atop the mask composition, and wherein curing the spin-on-glass composition is configured to prevent shifting or toppling of the spin-on glass composition from atop the mask composition while forming the patterned mask.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: May 24, 2016
    Assignee: Seagate Technology LLC
    Inventors: Zhaoning Yu, Nobuo Kurataka, Gennady Gauzner
  • Patent number: 9343331
    Abstract: A method of manufacturing a semiconductor device provided with a stack of a first film substantially free of oxygen and a second film disposed above the first film and comprising a metal oxide containing an uneasily etched material is disclosed. The method includes etching the second film by a first process using a first etch gas containing a boron trichloride containing gas and by a second process following the first process using a second etch gas containing an inert gas. In the second process, the second etch gas is used while a bias power is controlled to be equal to or greater than an etching threshold energy of the second film.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: May 17, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuhisa Matsuda, Toshiyuki Sasaki, Mitsuhiro Omura
  • Patent number: 9330703
    Abstract: The invention provides a chemical-mechanical polishing composition comprising alpha alumina, fumed alumina, silica, an oxidizing agent that oxidizes nickel-phosphorous, a complexing agent, and water. The invention also provides a method of chemically-mechanically polishing a substrate comprising contacting a substrate with a polishing pad and the chemical-mechanical polishing composition, moving the polishing pad and the polishing composition relative to the substrate, and abrading at least a portion of the substrate to polish the substrate.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: May 3, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Selvaraj Palanisamy Chinnathambi, Haresh Siriwardane
  • Patent number: 9315891
    Abstract: In some embodiments, a method for processing a substrate in a process chamber having a substrate support configured to move in a direction perpendicular to a top surface of a cover ring of a process kit may include positioning the substrate support in a first position such that a top surface of the substrate is positioned about 3 mm above to about 10 mm below a top surface of a cover ring of a process kit disposed about the periphery of the substrate support; performing a plasma deposition process while the substrate support is in the first position; moving the substrate support to a second position such that the top surface of the substrate is disposed about 3 mm below to about 15 mm above the top surface of the cover ring; and performing a plasma etch process while the substrate support is in the second position.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 19, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joung Joo Lee, William Johanson, Keith A. Miller, Alan A. Ritchie
  • Patent number: 9305783
    Abstract: A nanoimprint lithography method, including: pressing a mold in a photosensitive resin to form at least one imprint pattern defined by a stamped area and an adjacent area, the adjacent area being less stamped or not stamped at all, and being thicker than the stamped area; and exposure to a certain amount of sunlight. Respective thicknesses of the two areas are defined such that the two areas absorb a different amount of the sunlight and the amount of sunlight provided by the exposure is predetermined so as to be great enough to activate the resin in whichever of the two areas has the greater absorption, and so as not to be great enough to activate the other of the two areas.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 5, 2016
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Sebastien Pauliac
  • Patent number: 9304235
    Abstract: Microfabrication processes and apparatuses for fabricating microstructures on a substrate are disclosed. The substrate has a current diffraction grating pattern formed by current surface modulations over at least a portion of the substrate's surface that exhibit a substantially uniform grating linewidth over the surface portion. An immersion depth of the substrate in a fluid for patterning the substrate is gradually changed so that different points on the surface portion are immersed for different immersion times. The fluid changes the linewidth of the surface modulations at each immersed point on the surface portion by an amount determined by the immersion time of that point, thereby changing the current diffraction grating pattern to a new diffraction grating pattern formed by new surface modulations over the surface portion that exhibit a spatially varying grating linewidth that varies over the surface portion.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: April 5, 2016
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Lauri Sainiemi, Tapani Levola, Pasi Saarikko
  • Patent number: 9305814
    Abstract: A method of inspecting a substrate processing apparatus, which is capable of preventing product substrates from being supplied to a substrate processing chamber to be inspected, and inspecting the substrate processing chamber in desired timing. Product wafers W (product substrates) are inhibited from being conveyed into a processing unit to be inspected (substrate processing chamber) according to a selection of a menu option “QC MODE” by an operator, or in response to instruction from a host computer. A QC wafer is permitted to be conveyed from a carrier connected to an associated load port 24 into the processing unit to be inspected, in response to a notification the fact that a wafer stored in the carrier connected to the associated load port 24 is the QC wafer.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 5, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Masahiro Numakura
  • Patent number: 9275834
    Abstract: A method of removing titanium nitride is described. The silicon nitride resides on a patterned substrate. The titanium nitride is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a fluorine-containing precursor, a nitrogen-and-hydrogen-containing precursor and an oxygen-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: March 1, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Seung Park, Mikhail Korolik, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9275869
    Abstract: A method for etching a layer in a plasma chamber with an inner injection zone gas feed and an outer injection zone gas feed is provided. The layer is placed in the plasma chamber. A pulsed etch gas is provided from the inner injection zone gas feed at a first frequency, wherein flow of pulsed etch gas from the inner injection zone gas feed is ramped down to zero. The pulsed etch gas is provided from the outer injection zone gas feed at the first frequency and simultaneous with and out of phase with the pulsed etch gas from the inner injection zone gas feed. The etch gas is formed into a plasma to etch the layer, simultaneous with the providing the pulsed etch gas from the inner injection zone gas feed and providing the pulsed gas from the outer interjection zone gas feed.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: March 1, 2016
    Assignee: Lam Research Corporation
    Inventors: Saravanapriyan Sriraman, Alexander Paterson
  • Patent number: 9260310
    Abstract: A copper foil for producing graphene, having 60 degree gloss of 500% in a rolling direction and a direction transverse to rolling direction, and an average crystal grain size of 200 ?m or more after heating at 1000° C. for 1 hour in an atmosphere containing 20% by volume or more of hydrogen and balance argon.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: February 16, 2016
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yoshihiro Chiba
  • Patent number: 9263287
    Abstract: A method of forming fin-shaped structures includes the following steps. A plurality of spacers is formed on a substrate. The substrate is etched by using the spacers as hard masks to form a plurality of fin-shaped structures in the substrate. A cutting process is then performed to remove parts of the fin-shaped structures and the spacers formed on the removed parts.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: February 16, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Chao Tsao, Chien-Ting Lin
  • Patent number: 9255347
    Abstract: A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 9, 2016
    Assignee: Sandia Corporation
    Inventors: Jon Ihlefeld, Patrick Edward Hopkins