Patents Examined by Arlen Soderquist
  • Patent number: 10241047
    Abstract: The invention relates to a method for analysing a sample comprising at least a first and a second scale inhibitor, which scale inhibitors are synthetic organic compounds comprising at least one ionised group. The method comprises optionally diluting and/or purifying the sample, and allowing the sample interact with a reagent comprising lanthanide(III) ion. The sample is excited at a first excitation wavelength and a sample signal deriving from the lanthanide(III) ion is detected at a signal wavelength by using time-resolved luminescence measurement. The total concentration of the first and the second scale inhibitor is determined by using the detected sample signal, and the concentration of the first scale inhibitor in the sample is determined. The concentration of the second scale inhibitor is determined mathematically by using the obtained results for the total concentration and for the first scale inhibitor concentration.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: March 26, 2019
    Assignee: Kemira Oyj
    Inventors: Vesa Nuutinen, Susanna Toivonen, James Johnstone, Harri Härmä, Mirva Lehmusto, Satu Tiittanen, Pave Väisänen, Joonas Siivonen, Paul Mundill
  • Patent number: 10228382
    Abstract: A fluid transport system for an automated slide treatment apparatus having slide treatment modules is disclosed. The fluid transport system including a fluid dispensing robot configured by a controller to dispense a plurality of reagents to slides received in the slide treatment modules. The fluid dispensing robot includes pumping means configured by the controller to pump the reagents to be dispensed from a plurality of corresponding reagent containers; a probe having a body arranged to store one or more of the reagents pumped via the pumping means so as to prime the probe with said one or more of the reagents to be dispensed; and a well disposed on the body of the probe to store further of the reagents primed to be dispensed.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: March 12, 2019
    Assignee: LEICA BIOSYSTEMS MELBOURNE PTY LTD
    Inventors: Mark Brian Dockrill, Martin Limon, Michael Houston Drummond, Mark Wilcock, Brendyn Rodgers
  • Patent number: 10227694
    Abstract: A molecular sensor includes a substrate defining a substrate plane, and a plurality of pairs of electrode sheets above or below the substrate at an angle to the substrate plane. The molecular sensor further includes a plurality of inner dielectric sheets between each electrode sheet in each pair of electrode sheets of the plurality of pairs, and an outer dielectric sheet between each pair of electrode sheets of the plurality of pairs.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: March 12, 2019
    Assignee: Roswell Biotechnologies, Inc.
    Inventors: Sungho Jin, Barry L. Merriman, Tim Geiser, Chulmin Choi, Paul Mola
  • Patent number: 10222345
    Abstract: An acetic acid gas sensor based on an azobenzene compound includes an interdigital electrode and a coating material. The coating material is an azobenzene compound of formula I. The coating material is plated on the interdigital electrode through a vacuum coating process, and a thickness of the coating material is 100-200 nm.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 5, 2019
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Jinghui He
  • Patent number: 10217619
    Abstract: A method for mass spectral analysis of a sample containing a plurality of biomolecule species comprises: (a) mass analyzing a plurality of first-generation ion species generated from a sample portion; (b) automatically recognizing, for each of at least one biomolecule species, a respective subset of m/z ratios corresponding to respective first-generation ion species generated from the each biomolecule species; (c) selecting, from each recognized subset, a single representative m/z ratio; (d) isolating a sub-population of ions having each representative m/z ratio from ions having other m/z ratios; and (e) fragmenting each isolated sub-population of ions so as to generate second-generation ion species.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 26, 2019
    Assignee: THERMO FINNIGAN LLC
    Inventors: Ping F. Yip, James L. Stephenson, Jr., Oksana Gvozdyak
  • Patent number: 10202577
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: February 12, 2019
    Assignee: The General Hospital Corporation
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak
  • Patent number: 10184097
    Abstract: A method of creating a protective coating on an alkali metal hydroxide-containing solid is provided. The method includes providing carbon dioxide to an alkali metal hydroxide-containing solid and allowing the alkali metal hydroxide and carbon dioxide to react thereby forming a carbonate or bicarbonate-containing layer on the exterior of the solid wherein the carbonate or bicarbonate-containing layer is non-hygroscopic and water soluble, and wherein greater than 80% of the hydroxide in the hydroxide-containing solid does not react with the carbon dioxide, and further wherein the alkali metal hydroxide-containing solid is substantially free of lithium hydroxide. A method of testing for the presence of carbonate-containing coating on an alkali metal hydroxide containing solid is also provided. The method includes exposing the coated solid to 95 weight percent ethanol, collecting the ethanol effluent and testing the effluent for alkali metal hydroxide.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 22, 2019
    Assignee: Ecolab USA Inc.
    Inventors: Kim R. Smith, Mark P. Peterson, Keith E. Olson
  • Patent number: 10156567
    Abstract: The present invention provides an in-vitro method for detecting the presence of a target substance in a biological sample by magnetic resonance, the method comprising: a) providing a mixture comprising a biological sample and a plurality of magnetic nanoparticles, wherein the magnetic nanoparticles comprise a binding agent capable of binding the target substance when the target substance is present in the biological sample; and b) determining a T2 relaxation time corresponding to magnetic nanoparticles that are bound to the target substance (T2bound) in the sample; wherein T2bound differs from the T2 relaxation time corresponding to the magnetic nanoparticles that are not bound to the target substance (T2free), and wherein T2bound is determined without physically separating magnetic nanoparticles that are bound to the target substance from the magnetic nanoparticles that are not bound to the target substance.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: December 18, 2018
    Assignee: General Electric Company
    Inventors: Ramesh Venkatesan, Arun Balasubramanian, Chandan Ramaswamy Atreya, Ravi Hedge, Ritika Uppal Mukherjee
  • Patent number: 10150115
    Abstract: A closed system for rehydrating powder and delivering the rehydrated powder to a reactor, may include a liquid reservoir for containing liquid; a syringe configured to contain powder to be rehydrated; a reactor; a controller for controlling operation of the syringe; and a conduit fluidically linking the liquid reservoir to a port of the syringe, fluidically linking the port to the reactor. The controller is configured to operate the syringe so as to draw liquid from the liquid reservoir into the syringe and rehydrate the powder, or to drive the rehydrated powder into the reactor.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: December 11, 2018
    Assignee: SpacePharma SA
    Inventors: Molly K. Mulligan, Alexander Pekin, Yair Glick, Ira Naot, Yair Feuchtwanger
  • Patent number: 10151722
    Abstract: A molecular sensor includes a substrate defining a substrate plane, and a plurality of pairs of electrode sheets above or below the substrate at an angle to the substrate plane. The molecular sensor further includes a plurality of inner dielectric sheets between each electrode sheet in each pair of electrode sheets of the plurality of pairs, and an outer dielectric sheet between each pair of electrode sheets of the plurality of pairs.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: December 11, 2018
    Assignee: Roswell Biotechnologies, Inc.
    Inventors: Sungho Jin, Barry L. Merriman, Tim Geiser, Chulmin Choi, Paul Mola
  • Patent number: 10145810
    Abstract: A disclosed method for characterizing gas adsorption on a rock sample includes: measuring a nuclear magnetic resonance (NMR) response of the rock as a function of surrounding gas pressure along an isotherm; transforming the NMR response to obtain a Langmuir pressure distribution of gas adsorption on the rock sample; and displaying the Langmuir pressure distribution. The Langmuir pressure distribution may be shown in one dimension (e.g., contribution to signal response versus Langmuir pressure), or may be combined with additional pressure-dependencies such as spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and chemical shift (?) to form a multi-dimensional distribution. The method can further include: identifying peaks in the Langmuir pressure distribution; and associating a gas storage mechanism and capacity with each peak.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: December 4, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Haijing Wang, Scott Jeffrey Seltzer, Boqin Sun
  • Patent number: 10125420
    Abstract: A molecular sensor includes a substrate defining a substrate plane, and a plurality of pairs of electrode sheets above or below the substrate at an angle to the substrate plane. The molecular sensor further includes a plurality of inner dielectric sheets between each electrode sheet in each pair of electrode sheets of the plurality of pairs, and an outer dielectric sheet between each pair of electrode sheets of the plurality of pairs.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: November 13, 2018
    Assignee: Roswell Biotechnologies, Inc.
    Inventors: Sungho Jin, Barry L. Merriman, Tim Geiser, Chulmin Choi, Paul Mola
  • Patent number: 10114033
    Abstract: Improved methods, devices, and systems for mixing fluids, including small volumes of fluid, are provided. Pressing a pipette tip against an inner surface of a mixing vessel allows pressure to be applied within the tip. Greater pressure may be built-up than would be possible without engaging the tip with the mixing vessel. Disengaging the tip allows fluid flow through the tip, providing improved fluid mixing as compared to methods lacking engagement of a pipette tip with an inner surface of a mixing vessel while applying pressure within the pipette tip. Mixing vessels having features on an inner surface that are configured to engage a pipette tip, and to occlude an orifice of a pipette tip, are provided. Sample analysis devices and systems including pipette tips and mixing vessels configured to engage each other for pressure application within the tip are provided.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: October 30, 2018
    Assignee: Theranos IP Company, LLC
    Inventor: Matthew Black
  • Patent number: 10107828
    Abstract: A clamp device includes a frame; a carriage slidably engaged with the frame and including a receptacle to receive a cartridge including fluidics ports and electronic contacts, the carriage slidable between an open position and a closed position; a fluidics interface to engage the fluidics ports of the cartridge when the carriage is in a closed position; an electronic interface to engage the electronic contacts of the cartridge when the carriage is in the closed position; a driver to draw the fluidics interface and the electronic interface together, the cartridge secured between the electronic interface and the fluidics interface; and a sensor system to detect the presence of the cartridge in the receptacle and configured to prevent the driver from drawing the fluidics interface and electronic interface together when the cartridge is absent.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: October 23, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventor: Jon Hoshizaki
  • Patent number: 10101278
    Abstract: A portable spectrometer system is disclosed for more reliable and convenient on-site drug testing. More particularly, but not by way of limitation, the presently disclosed and/or claimed inventive concept(s) relates to a portable spectrometer system having a test strip having a fluorescent indicator, a fluorimeter, and a mobile computing device capable of determining the identity of an unknown substance in the sample.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: October 16, 2018
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Richard George Blair
  • Patent number: 10086373
    Abstract: An automatic analyzer cartridge, spinnable around a rotational axis, has a support structure with a front face perpendicular to the rotational axis, a fluidic structure for processing a biological sample into the processed biological sample, a measurement structure with at least one detection zone on the front face, and a rotatable lid covering the front face. The rotatable lid is rotatable about the rotational axis relative to the support structure from a first position relative to the support structure to a second position relative to the support structure. The rotatable lid has a sample inlet opening and a detection zone opening. In the first position, a sample inlet is aligned with the sample inlet opening and the measurement structure is covered by the rotatable lid. In the second position, the sample inlet is covered by the rotatable lid and the measurement structure is aligned with the detection zone opening.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: October 2, 2018
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christoph Boehm, Sascha Lutz, Juergen Spinke, Thorsten Brueckner
  • Patent number: 10060913
    Abstract: Embodiments described herein may be useful in the detection of analytes. The systems and methods may allow for a relatively simple and rapid way for detecting analytes such as chemical and/or biological analytes and may be useful in numerous applications including sensing, food manufacturing, medical diagnostics, performance materials, dynamic lenses, water monitoring, environmental monitoring, detection of proteins, detection of DNA, among other applications. For example, the systems and methods described herein may be used for determining the presence of a contaminant such as bacteria (e.g., detecting pathogenic bacteria in food and water samples which helps to prevent widespread infection, illness, and even death). Advantageously, the systems and methods described herein may not have the drawbacks in current detection technologies including, for example, relatively high costs, long enrichment steps and analysis times, and/or the need for extensive user training.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 28, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Qifan Zhang, Suchol Savagatrup
  • Patent number: 10060939
    Abstract: A system and method are described that allow the autonomous collection of relevant data and samples from a patient during a clinical trial or during routine care. Sampling is accomplished by drawing multiple samples into tubing, such as microfluidic tubing, and using a pump to move the samples through the tubing. A spacer fluid is provided to separate each sample and to prevent contamination between each. A microcontroller is used to control the operation of the pump and to gather data about the patient from the electronic medical record or other alternative inputs, and the sampling, including data from onboard sensors.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: August 28, 2018
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventor: Alan Rosenbloom
  • Patent number: 10041960
    Abstract: Devices, systems, and methods for measuring the blood loss of a subject during a medical procedure. Blood and other fluids are received within a container, and a blood measurement device determines the hemoglobin concentration of the fluid within the container. The blood measurement device can also calculate the estimated blood loss of the subject based upon the determined hemoglobin concentration and the volume of the fluid within the container and the patient's hemoglobin.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: August 7, 2018
    Assignee: University of Utah Research Foundation
    Inventors: Annette MacIntyre, Lara Brewer, Suzanne Wendelken, Quinn Tate, Soeren Hoehne
  • Patent number: 10041921
    Abstract: The invention relates to a method for producing organic amino compounds from organic nitro compounds, wherein the organic nitro compound hydrogenated to the organic amino compound with a hydrogen-containing gas stream by means of a catalyst, the reaction course of the hydrogenation being monitored by analysis of secondary products forming during hydrogenation, wherein the method is characterized in that the concentration of one or more gaseous secondary products is determined in the gas phase and if the concentration falls below a predefinable minimum concentration the hydrogenating activity of the catalyst is increased. The present invention also relates to a device for performing said method.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: August 7, 2018
    Assignee: COVESTRO DEUTSCHLAND AG
    Inventors: Bernd Pennemann, Bodo Temme