Patents Examined by Arnel C. Lavarias
  • Patent number: 11598943
    Abstract: A fluorescence microscope (10) includes a sample illumination beam path including a source (9) for illumination light, a first wave front modulator (24) for providing the focused illumination light (8) with a central intensity minimum, a beam splitter (26) and a second adjustable wave front modulator (34) arranged in a pupil plane (30) of an objective (20). A first detection beam path section including the second wave front modulator (34) and a telescope (11) and ending at the beam splitter (26) coincides with the sample illumination beam path. A separate second detection beam path section includes a detector (38) for luminescence light from a sample. The telescope (11) images a first pupil (31) formed in the pupil plane (30) in a smaller second pupil (32), and transfers a beam of the illumination light (8) collimated in the second pupil (32) into an expanded beam collimated in the first pupil (31).
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 7, 2023
    Assignee: ABBERIOR INSTRUMENTS GMBH
    Inventors: Joern Heine, Haugen Mittelstaedt, Matthias Reuss, Gerald Donnert
  • Patent number: 11592644
    Abstract: In a state in which a position sensor for focusing is viewed in the direction of an optical axis, a line connecting the position sensor for focusing to the optical axis is set as a first reference line and a line orthogonal to the first reference line and passing through the optical axis is set as a second reference line. The position sensor for focusing is disposed in a first region of the first region and a second region partitioned by the second reference line. An X-direction VCM and a Y-direction VCM are arranged in the second region. The influence of magnetism from the X-direction VCM and the Y-direction VCM on the position sensor for focusing is suppressed.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 28, 2023
    Assignee: FUJIFILM Corporation
    Inventor: Hideo Kobayashi
  • Patent number: 11592653
    Abstract: An auto-focusing system is disclosed. The system includes an illumination source. The system includes an aperture. The system includes a projection mask. The system includes a detector assembly. The system includes a relay system, the relay system being configured to optically couple illumination transmitted through the projection mask to an imaging system. The relay system also being configured to project one or more patterns from the projection mask onto a specimen and transmit an image of the projection mask from the specimen to the detector assembly. The system includes a controller including one or more processors configured to execute a set of program instructions. The program instructions being configured to cause the one or more processors to: receive one or more images of the projection mask from the detector assembly and determine quality of the one or more images of the projection mask.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: February 28, 2023
    Assignee: KLA Corporation
    Inventors: Xiumei Liu, Kai Cao, Richard Wallingford, Matthew Giusti, Brooke Bruguier
  • Patent number: 11585970
    Abstract: A single crystal multilayer low-loss optical component including first and second layers made from dissimilar materials, with the materials including the first layer lattice-matched to the materials including the second layer. The first and second layers are grown epitaxially in pairs on a growth substrate to which the materials of the first layer are also lattice-matched, such that a single crystal multilayer optical component is formed. The optical component may further include a second substrate to which the layer pairs are wafer bonded after being removed from the growth substrate.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: February 21, 2023
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Bertrand Bovard, Erdem Arkun
  • Patent number: 11576456
    Abstract: An optical filter includes a first layer including a first notch filter arranged to attenuate electromagnetic radiation having a first wavelength ?1 incident normally thereupon. The optical filter includes a second layer including a second notch filter arranged to attenuate electromagnetic radiation having a second wavelength ?2 incident normally thereupon. The first wavelength ?1 and the second wavelength ?2 are different. The second layer is stacked upon the first layer. In use, the first notch filter attenuates the electromagnetic radiation having a predetermined wavelength ? incident thereupon at a first angle of incidence ?1 and the second notch filter attenuates the electromagnetic radiation having the predetermined wavelength ? incident thereupon at a second angle of incidence ?2, wherein the first angle of incidence ?1 and the second angle of incidence ?2 are different.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: February 14, 2023
    Assignee: BAE SYSTEMS PLC
    Inventor: Mark Edgar Bray
  • Patent number: 11573413
    Abstract: An equatorial mount for providing a telescope with a balanced weight distribution is described. The equatorial mount includes a base, a declination base, and a device support. The declination base is rotatable about a right ascension axis relative to the base. The device support is rotatable about a declination axis relative to the declination base. The declination axis intersects orthogonally with the right ascension axis and the declination axis intersects a midsection of the declination base. The declination base includes a counterweight assembly extending along a counterweight axis, the counterweight axis being spaced away from the declination axis along the right ascension axis.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: February 7, 2023
    Assignee: Nantong Schmidt Opto-Electrical Technology Co., Ltd.
    Inventors: Yufeng Sun, Wenzhong Shen, Xuefeng Zhu
  • Patent number: 11562584
    Abstract: Systems and methods herein provide improved, high-throughput multiphoton imaging of thick samples with reduced emission scattering. The systems and methods use structured illumination to modify the excitation light. A reconstruction process can be applied to the resulting images to recover image information free of scattering. The disclosed systems and methods provide high throughput, high signal-to-noise ratio, and high resolution images that are depth selective.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: January 24, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Jong Kang Park, Dushan Wadduwage, Yi Xue, Elly Nedivi, Peter T. C. So, Christopher Rowlands, Kalen Berry
  • Patent number: 11561408
    Abstract: A state detection device includes a camera configured to capture an image of an imaging area where a driver is present, a laser configured to emit light toward the imaging area, and an optical member configured to emit the light of the laser with spreading to a predetermined irradiation area.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 24, 2023
    Assignee: DENSO CORPORATION
    Inventors: Yosuke Sakai, Takuhiro Omi
  • Patent number: 11555991
    Abstract: A method for illuminating samples in microscopic imaging methods, wherein a number m of different wavelengths ?i, with m>I and i=I, . . . , m, is selected for the illumination. For each of the wavelengths ?i a target phase function ??i(x, y, ?i) is predefined, wherein x and y denote spatial coordinates in a plane perpendicular to an optical axis z and each target phase function ??i(x, y, ?i) is effective only for the corresponding wavelength ?i. The target phase functions ??i are predefined depending on the structure of the sample and/or the beam shape and/or illumination light structure to be impressed on the light used for illumination. A total phase mask is then produced which realises all target phase functions ??i(x, y, ?i). This total phase mask is then illuminated simultaneously or successively with coherent light of wavelengths ?i such that the predefined structure of the illumination light is generated in the region of the sample.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: January 17, 2023
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventors: Joerg Siebenmorgen, Ralf Netz
  • Patent number: 11549955
    Abstract: A microscope system may comprise a plurality of microscope modules, a cassette for holding a plurality of slides, a slide loader configured to move the plurality of slides between the cassette and the plurality of microscope modules, and a processor coupled to the slide loader. The processor may be configured with instructions which, when executed, cause the slide loader to move a slide into or from a selected microscope module among the plurality of microscope modules. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: January 10, 2023
    Assignee: SCOPIO LABS LTD.
    Inventors: Itai Hayut, Erez Na'Aman, Eran Small
  • Patent number: 11543675
    Abstract: An actuator for a reflector may include a carrier having a first groove rail at the rear, a first magnet above the carrier, a middle guide having a first guide rail to face the groove rail and having a second groove rail of a track shape at the rear, a first ball between the first groove rail and the first guide rail, a second magnet at the rear of the middle guide, a base having a second guide rail to face the second groove rail and the middle guide, a second ball between the second groove rail and the second guide rail, a circuit board with a first coil and a second coil, a pulling yoke at the front of the middle guide, and a pulling magnet at the rear of the carrier to face the pulling yoke and to generate an attractive force to the pulling yoke.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 3, 2023
    Assignee: JAHWA electronics Co., Ltd.
    Inventors: chul soon Park, je seung Yeon, in su Kang, hyeonik Cho
  • Patent number: 11536882
    Abstract: A method of fabricating an imaging system as well as to a corresponding imaging system. The method includes providing a substrate; and forming, by means of a 3D-printing technique, a 3D structure on the substrate, wherein the forming of the 3D structure includes forming a stack of at least two diffractive optical elements in a single printing step.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: December 27, 2022
    Assignee: BADEN-WÜRTTEMBERG STIFTUNG GGMBH
    Inventors: Simon Thiele, Harald Giessen, Christof Pruss, Alois Herkommer
  • Patent number: 11536981
    Abstract: A diffractive optical element includes: a substrate; a protrusion and recess portion that is formed on one surface of the substrate and imposes predetermined diffraction on incident light; and an antireflection layer provided between the substrate and the protrusion and recess portion. An effective refractive index difference ?n in a wavelength range of the incident light between a first medium constituting a protrusion of the protrusion and recess portion and a second medium constituting a recess of the protrusion and recess portion is 0.70 or more. An exit angle range ?out of diffraction light exiting from the protrusion and recess portion when the incident light enters the substrate from a normal direction of the substrate is 60° or more. Total efficiency of diffraction light exiting from the protrusion and recess portion in the exit angle range is 65% or more.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: December 27, 2022
    Assignee: AGC INC.
    Inventors: Ryota Murakami, Motoshi Nakayama
  • Patent number: 11531194
    Abstract: A microscope includes an illumination unit for illuminating a region of a specimen to generate an illuminated region, an imaging optical unit for magnified imaging of the illuminated region, an image sensor disposed downstream of the imaging optical unit for capturing the magnified image of the illuminated region, a camera for recording an overview region of the specimen without using the imaging optical unit and a control unit for controlling the image sensor and the camera. The overview region includes a part of the illuminated region and a non-illuminated region of the specimen. The control unit actuates the camera to make a recording of the overview region. The control unit actuates the image sensor to cause a recordation of the magnified image of the illuminated region. The control unit generates an overview image based on the recording of the overview region and the recording of the magnified image.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: December 20, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Alois Regensburger, Susanne Kohlhammer, Jonathan Essig
  • Patent number: 11530792
    Abstract: To protect observer's eyes while forming a clear illumination pattern on a desired region to be illuminated. An illumination device includes a light source that emits coherent light, a collimating optical system that enlarges and collimates a beam diameter of the coherent light emitted from the light source, and a diffractive optical element that diffracts the coherent light collimated by the collimating optical system into a predetermined diffusion angle space. The diffractive optical element has a plurality of element diffractive optical portions and has a function to illuminate the region to be illuminated defined at a predetermined position and having predetermined size and shape to form the desired illumination pattern. Each of the plurality of element diffractive optical portions has a function to illuminate at least a part of the region to be illuminated, and diffractive characteristics of the element diffractive optical portions are different from each other.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: December 20, 2022
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Makio Kurashige, Shumpei Nishio
  • Patent number: 11525991
    Abstract: A quantitative phase microscopy (QPM) system and methods are provided for sample imaging and metrology in both transmissive and reflective modes. The QPM system includes a first illuminating beam propagating along a transmission-mode path and a second illuminating beam propagating along a reflection-mode path, a microscope objective lens disposed in the reflection-mode path, and a common-path interferometer comprising a diffraction grating, a Fourier lens, a pinhole, and a 2f system lens to collimate the reference beam and the imaging beam such that the collimated reference beam and imaging beam interfere with each other to form an interferogram at a final image plane.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 13, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Renjie Zhou, Mengxuan Niu, Gang Luo
  • Patent number: 11513329
    Abstract: A system for illuminating a microscopy specimen includes an illumination source configured to emit a light that travels along an illumination path to illuminate the microscopy specimen placed on an optical detection path of an optical microscope. The system also includes optical elements in the illumination path and configured to at least in part transform the light from the illumination source into a light sheet illuminating the microscopy specimen. The optical elements include an electronically tunable lens configured to vary a focal distance of the electronically tunable lens to dynamically vary a position of a waist of the light sheet illuminating the microscopy specimen. The optical elements include a deflector configured to vertically move the light sheet to illuminate the microscopy specimen at different horizontal planes.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 29, 2022
    Inventor: Igor Lyuboshenko
  • Patent number: 11506882
    Abstract: A method for supporting a user aiming at an object with a telescope includes determining and storing a first object position of the object relative to the telescope when a user aims at the object with the telescope and the telescope is located at a first telescope position, and supporting a user when aiming at the object again with the same telescope based on the stored first object position relative to the telescope.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 22, 2022
    Assignee: Carl Zeiss AG
    Inventors: Norbert Kerwien, Holger Muenz
  • Patent number: 11491825
    Abstract: A structural color developing member includes: a base material including a surface, at least a portion of which is provided with a fine ridged/grooved structure formed at a constant arrangement pitch, the base material developing a structural color by the fine ridged/grooved structure; and a color developing layer layered on a surface of the fine ridged/grooved structure. The color development from the color developing layer is a hue included in color development of the structural color, and a region of the structural color developing member in which the fine ridged/grooved structure and the color developing layer are provided is visually recognizable in a single hue. Instead of the color developing layer, a polarized reflection layer may be provided.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: November 8, 2022
    Assignee: The Yokohama Rubber Co., LTD.
    Inventor: Ryota Takahashi
  • Patent number: 11480917
    Abstract: A method of reconstructing a three-dimensional (3-D) image on the basis of a diffraction grating includes extracting parallax images from a raw image of an object photographed by using a diffraction grating and reconstructing a 3-D image from the extracted parallax image array by using a virtual pinhole model.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: October 25, 2022
    Assignee: SANGMYUNG UNIVERSITY INDUSTRY-ACADEMY COOPERATION FOUNDATION
    Inventors: Hoon Yoo, Jae Young Jang