Patents Examined by Bao Q. Vu
  • Patent number: 8427846
    Abstract: A three-phase inverter circuit includes an inverter incorporating a plurality of controllable power switches, and an electronic control device adapted to control the power switches. The control device in the event of a measured voltage drop on one phase is adapted to supply a reactive current on the phase with voltage drop and to supply and/or draw an active current on at least one phase without voltage drop.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 23, 2013
    Assignee: FeCon GmbH
    Inventor: Stephan Rexilius
  • Patent number: 8422256
    Abstract: A control system for parallel connected inverter legs energized by a power source and configured for servicing a load is disclosed. The invention facilitates the number of running inverter legs to adaptively react to changes in the load by dynamically switching various inverter legs “on” or “off” in response to variations in load demand, while continuing magnetization of an output transformer connected with an “off” inverter leg via a back-feed from another output transformer of an “on” inverter leg, greatly improving the dynamic response to load changes. This design enables a fast reaction to load changes with “off” inverter legs transitioning to on-line operation instantaneously.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventors: Lorenzo Giuntini, Silvio Colombi
  • Patent number: 8411466
    Abstract: The present invention includes: a plurality of switching elements connected in series and connected between two ends of a DC power supply; a first control circuit to alternately turn on and off the switching elements in response to a constant oscillation frequency signal; a series circuit including a primary winding of a transformer and a capacitor connected together in series, and being connected to a connecting point between the switching elements, and to an end of the DC power supply; a rectifying/smoothing circuit to rectify and smooth a voltage in a secondary winding of the transformer thereby to output a DC voltage; a control switching element connected to two ends of the primary or secondary winding of the transformer; and a second control circuit to control the DC voltage at a predetermined voltage by turning on and off the control switching element.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Hiroshi Usui
  • Patent number: 8410768
    Abstract: A power supply having an input and an output, includes a power converter coupled between the input and output of the power supply including at least one switch that is controlled by comparing a sensed voltage, the sensed voltage corresponding to a current flowing through the switch, to a reference voltage. A controller, in response to a change detected in a switching frequency of the switch, reduces audible noise generated by the power supply by at least one of: adjusting the reference voltage; adjusting the current sense voltage; or adjusting a resistance used to generate the sensed voltage.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 2, 2013
    Assignee: Delta Electronics, Inc.
    Inventors: Laszlo Huber, Milan M. Jovanović, Chien-Chung Chang
  • Patent number: 8400787
    Abstract: The configurations of a resonant converter system and a controlling method thereof are provided. The proposed resonant converter system includes a resonant converter receiving an input voltage for outputting an output voltage, a rectifying device having a first rectifying switch and a synchronous rectification control circuit coupled to the resonant converter and including a signal generation apparatus generating a weighted turn-off signal to turn off the first rectifying switch at a zero crossing point of a first current flowing through the first rectifying switch.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: March 19, 2013
    Assignee: Delta Electronics, Inc.
    Inventors: Hongyang Wu, Bin Wang, Jianhong Zeng, Jianping Ying, Xiaoni Xin
  • Patent number: 8400132
    Abstract: A circuit may generate a clock signal with a variable period given by a ratio between an initial switching period and a number of phase circuits through which a current of a multi-phase PWM voltage converter flows. The circuit may include an adjustable current generator driven by a signal representing the number of phase circuits through which the current flows and configured to generate a current proportional to the number of phase circuits through which the current flows, and a tank capacitor charged by the adjustable current generator. The circuit may include a comparator of a voltage on the tank capacitor with a threshold value configured to generate a pulse of the clock signal when the threshold value is attained, and a discharge path of the tank capacitor, the discharge path being enabled during the pulses of the clock signal.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 19, 2013
    Assignee: STMicroelectronics S.R.L.
    Inventors: Osvaldo Enrico Zambetti, Daniele Giorgetti
  • Patent number: 8400792
    Abstract: A power conversion apparatus includes an inverter for converting DC power to AC power for supply to a load, a converter for converting AC power from an AC power supply to DC power for supply to the inverter, and a DC voltage converter for converting a voltage value of power stored in a storage battery and supplying DC power from the storage battery to the inverter when power supply by the AC power supply is abnormal. The converter includes a first three-level circuit which is a multi-level circuit. Similarly, the DC voltage converter includes a second three-level circuit. A control device controls the first and second multi-level circuits to suppress potential fluctuation at a neutral point between first and second capacitors.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 19, 2013
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Eduardo Kazuhide Sato, Masahiro Kinoshita, Yushin Yamamoto, Tatsuaki Amboh
  • Patent number: 8400797
    Abstract: A power conversion system with zero-voltage start-up mechanism and a zero-voltage start-up device are disclosed. The system includes a power conversion circuit, a power factor correction unit, a storage capacitor, a storage switching unit, and a zero-voltage detection module. The storage switching unit is serially connected with the storage capacitor, and particularly controlled by the zero-voltage detection module. The zero-voltage detection module detects a timing as an input voltage is at low level, and then outputs a control signal to turn on the storage switching unit. Therefore, the present invention assures that the power conversion system is turned on when the input voltage is at the low level, in order to suppress the system from a surge current.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: March 19, 2013
    Assignee: Lien Chang Electronic Enterprise Co., Ltd.
    Inventors: Chun-Kong Chan, Hsi-Yuan Tsai
  • Patent number: 8395919
    Abstract: A power inverter system includes a DC to AC inverter configured to convert DC voltage from a DC power source to AC voltage. A DC link couples the DC power source and the inverter. An inverter pre-charger operates to pre-charge the inverter to achieve a desired DC link voltage prior to connecting the power inverter system to an AC power grid. A phased lock loop synchronizes the pre-charged inverter to the AC power grid prior to connecting the power inverter system to the AC power grid. The pre-charged inverter regulates the DC link voltage to about the minimum voltage level that allows control of AC grid currents via the inverter subsequent to connecting the power inverter system to the AC grid. The inverter operates in a maximum power point tracking control mode only subsequent to a first voltage transient caused by connecting the DC power source to energize the power inverter system.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 12, 2013
    Assignee: General Electric Company
    Inventors: Stefan Schroeder, Jie Shen, Said Farouk Said El-Barbari, Robert Roesner
  • Patent number: 8395364
    Abstract: The reliability of a semiconductor device is improved. A package of a semiconductor device internally includes a first semiconductor chip and a second semiconductor chip in which power MOS•FETs are formed and a third semiconductor chip in which a control circuit controlling the first and second semiconductor chips is formed. The first to third semiconductor chips are mounted on die pads respectively. Source electrode bonding pads of the first semiconductor chip on a high side are electrically connected with a first die pad of the die pads via a metal plate. On a top surface of the die pad 7D2, a plated layer formed in a region where the second semiconductor chip is mounted, and another plated layer formed in a region where the metal plate is joined are provided and the plated layers are separated each other with a region where no plated layer is formed in between.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yukihiro Sato, Tomoaki Uno
  • Patent number: 8391027
    Abstract: In one embodiment, a quasi-resonant power supply controller is configured to select particular valley values of a switch voltage to determine a time to enable a power switch. The valleys values are selected responsively to a range of values of a feedback signal.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 5, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Petr Lidak, Christophe Basso, Stephanie Conseil, Frantisek Sukup
  • Patent number: 8385085
    Abstract: The PWM signal generator of the present invention generates a first pulse waveform in which a first on-time ?T1 calculated by a first on-time calculator (401) is used as an on-duration, and a second pulse waveform in which a second on-time ?T2, calculated by a second on-time calculator (402) when a preset delay time has elapsed from the start of the calculation of the first on-time ?T1, is used as an on-duration. Also, a PWM signal generator (413) generates a PWM signal on the basis of a composite pulse in which the generated first pulse waveform and second pulse waveform are combined, and the first on-time calculator (401) calculates the first on-time ?T1 at the end of the composite pulse waveform.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: February 26, 2013
    Assignees: Daihen Corporation, Kyoto University, National University Corporation Nagaoka University of Technology
    Inventors: Nobuyuki Hattori, Yoshito Ohta, Kenji Hirata
  • Patent number: 8385086
    Abstract: A converter has a network-side and a load-side power converter that are connected together on the DC side in an electrically conductive manner. An upper and a lower valve branch of each phase module, respectively, of the load-side power converter has at least one two-poled subsystem. At least one multiphase network-controlled power converter is provided as the network-side power converter. In this way, a converter is obtained, in particular an intermediate voltage circuit converter for intermediate voltages, which combines a simple and cost-effective feed circuit on the network side with a modular multilevel converter on the load side.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: February 26, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marc Hiller, Rainer Sommer
  • Patent number: 8379419
    Abstract: A soft-stop overvoltage protection circuit, into which a soft-stop overvoltage detection voltage proportional to a direct current output voltage is input, reduces the output of a multiplier in accordance with the soft-stop overvoltage detection voltage when the soft-stop overvoltage detection voltage exceeds a first threshold value. An overvoltage protection circuit, a second threshold value higher than the first threshold value being set, compulsorily turns off a switching element by outputting an overvoltage detection signal when the soft-stop overvoltage detection voltage exceeds the second threshold value. The soft-stop overvoltage protection circuit compulsorily increases the output of a voltage error amplifier circuit on the output voltage decreasing. When the output of the voltage error amplifier circuit increases suddenly, and the output voltage rises excessively, the soft-stop overvoltage protection circuit decreases the output of the multiplier, thus curbing the rise of the output voltage.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 19, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Jun Yabuzaki, Jian Chen
  • Patent number: 8378658
    Abstract: A semiconductor device, circuit, and AC and DC load switch for maintaining a small input-output differential voltage and providing a defined response. The load switch can include a pass element coupled to an input terminal and an output terminal. The pass element can include a control terminal, with the control terminal controlling a response of the pass element. The load switch can include a first loop coupled to the control terminal configured to control a voltage drop between the input terminal and the output terminal while maintaining high impedance with the pass element. The load switch can include a second loop coupled to the control terminal configured to provide a defined filter response from the input terminal. The defined response can be a low pass response, high pass response, or a band pass response. The passband and/or stopband of the response can be programmed.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 19, 2013
    Assignee: Micrel, Inc.
    Inventor: David Schie
  • Patent number: 8378653
    Abstract: A HDMI (High-Definition Multimedia Interface) transmitter component may be operated solely on power that is scavenged and converted from termination tail current received while the HDMI transmitter component is coupled to an HDMI compliant sink connector on a HDMI receiver component. The termination tail current is received at the transmitter component from a plurality of differential HDMI signals from terminators on a receiver component. A portion of the received tail current is converted to form a supply voltage Vdd source. Function logic on the transmitter component is operated using the Vdd voltage, and the function logic is configured to control the plurality of differential signals.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Hugh Thomas Mair
  • Patent number: 8379421
    Abstract: When a commercial power supply E operates normally, converter sections PFC1, PFC2 connected in parallel to each other can operate to approximate the input current from the commercial power supply E to the waveform and phase of the input voltage to correct a power factor while supplying stabilized output voltages Vo1, Vo2 to a load. When the voltage of the commercial power supply E drops, the smoothing capacitor Co1 operates as an input power supply to power the converter section PFC2, which allows the smoothing capacitor Co2 to supply the stabilized output voltage Vo2 to the load.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 19, 2013
    Assignee: Oita University
    Inventor: Kimihiro Nishijima
  • Patent number: 8374007
    Abstract: A power supply apparatus and a method for supplying power are provided. The apparatus, for use in a system having a first power signal, includes an assistance unit and a power supply device. The assistance unit outputs at least one maintaining signal according to the first power signal selectively. The power supply device outputs a second power signal, wherein the power supply device maintains the second power signal according to the at least one maintaining signal, for example, in an inactive state, such as an idle or standby state or other suitable timing.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chih-Ting Hu, Chun-Hsiung Hung, Chuan-Ying Yu, Wu-Chin Peng, Kuen-Long Chang, Ken-Hui Chen
  • Patent number: 8373395
    Abstract: A power source apparatus includes: a switch circuit to receive an input voltage; a control circuit to switch the switch circuit from a second state to a first state at a timing corresponding to a comparison result between a feedback voltage generated based on a first voltage corresponding to an output voltage and a reference voltage generated based on a standard voltage set in accordance with the output voltage; and a voltage generation circuit to add a compensation voltage generated by voltage-converting a time period in which the switch circuit switches from the second state to the first state to one of the first voltage and the standard voltage, to generate the feedback voltage, to add a slope voltage which changes at a slope to one of the first voltage and the standard voltage, and to generate the reference voltage.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 12, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Makoto Yashiki
  • Patent number: 8374000
    Abstract: An interleaved flyback converter device with leakage energy recycling includes: two flyback converters and an input power. Each flyback converter includes a capacitor, a switch, two diodes, and a transformer. The input power is connected to the capacitors of the two flyback converters respectively. By using the capacitors as input voltage, the two flyback converters are provided with lower voltage rating. The diodes are used to recycle leakage energy directly, and to clamp voltage on power components. Therefore, in addition to enhancing efficiency via recycling leakage energy, the two flyback converters have lower switching losses due to lower switching voltage.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: February 12, 2013
    Assignee: National Cheng Kung University
    Inventors: Tsorng-Juu Liang, Wen-Yu Huang, Lung-Sheng Yang, Shih-Ming Chen, Jiann-Fuh Chen