Patents Examined by Benjamin M Baldridge
  • Patent number: 8901913
    Abstract: Among others things, techniques, systems, and apparatus are disclosed for recording electrophysiological signals. In one aspect, a microelectrode sensing device includes a printed circuit board (PCB), a chip unit electrically connected to the PCB, and a cell culture chamber positioned over the chip unit and sealed to the PCB with the chip unit between the PCB and the cell culture chamber. The chip unit includes a substrate; a conductive layer positioned over the substrate that includes one or more recording electrodes; an insulation layer positioned over the conductive layer; another conductive layer positioned over the insulation layer that includes positioning electrodes; and another insulation layer positioned over the other conductive layer. The recording and positioning electrodes are electrically independent so as to independently receive a stimulus signal at each recording electrode and positioning electrode and independently detect a sensed signal at each recording electrode.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: December 2, 2014
    Assignee: CapitalBio Corporation
    Inventors: Jing Zhu, Zhongyao Yu, Xueling Quan, Guangxin Xiang, Yuming Hu, Wanli Xing, Jing Cheng
  • Patent number: 8896330
    Abstract: A method and apparatus for monitoring an AC line for impedance change. In one embodiment, the method, comprises superimposing a tone on an AC current coupled to the AC line, wherein the tone is a higher frequency than an AC voltage waveform on the AC line; applying a correlation over a sampled AC voltage waveform, obtained by sampling the AC voltage waveform, to generate a correlated signal; and determining whether at least one change in characteristic of the correlated signal occurs.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 25, 2014
    Assignee: Enphase Energy, Inc.
    Inventors: Andrew Barnes, Brian Acker
  • Patent number: 8894804
    Abstract: An arrangement within a plasma reactor for detecting a plasma unconfinement event is provided. The arrangement includes a sensor, which is a capacitive-based sensor implemented within the plasma reactor. The sensor is implemented outside of a plasma confinement region and is configured to produce a transient current when the sensor is exposed to plasma associated with the plasma unconfinement event. The sensor has at least one electrically insulative layer oriented toward the plasma associated with the plasma unconfined event. The arrangement also includes a detection circuit, which is electrically connected to the sensor for converting the transient current into a transient voltage signal and for processing the transient voltage signal to ascertain whether the plasma unconfinement event exists.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 25, 2014
    Assignee: Lam Research Corporation
    Inventors: Jean-Paul Booth, Alexei Marakhtanov, Rajinder Dhindsa, Luc Albarede, Seyed Jafar Jafarian-Tehrani
  • Patent number: 8890544
    Abstract: In a circuit for measuring a capacitive charge a drive module is configured for coupling with a sensor electrode of a capacitive input device. The drive module is configured to drive the sensor electrode with a plurality of positive and negative measurement cycles. A latched comparator comprises an input for capturing voltages from the sensor electrode. An output of the latched comparator provides output signals based upon the captured voltages from the sensor electrode. A first counter is set based on a first output signal produced by a first voltage captured by the input during a positive measurement cycle. A second counter is set based on a second output signal produced by a second voltage captured by the input during a negative measurement cycle. A determination module is configured to produce a demodulated output signal based on the first counter value and the second counter value.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 18, 2014
    Assignee: Synaptics Incorporated
    Inventor: Kirk Hargreaves
  • Patent number: 8884635
    Abstract: A circuit for measuring a change in capacitive coupling between a transmitter electrode and receiver electrode includes a transmitter module that couples with the transmitter electrode and drives it with a plurality of positive and negative measurement cycles. A latched comparator has an input and an output, where the input couples with the receiver electrode. Upon enablement, the latched comparator determines if receiver electrode voltages satisfy an input threshold of the latched comparator and provides an output signal from an output based on this determination. A first counter is adjusted based on a first output signal of the latched comparator output during a positive measurement cycle. A second counter is adjusted based on a second output signal of the latched comparator during a negative measurement cycle. Measurement of change in capacitive coupling between the transmitter electrode and receiver electrode is based on counter values of the first and second counters.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 11, 2014
    Assignee: Synaptics Incorporated
    Inventor: Kirk Hargreaves
  • Patent number: 8878549
    Abstract: An AC impedance measuring device includes: a signal generator configured to provide a first signal on which a period signal is superimposed to a DUT; a Fourier transform unit configured to perform Fourier transform on current data and voltage data output from the DUT using a transformation window while sequentially shifting a start time of the transformation window, thereby obtaining a plurality of Fourier transform data strings of the voltage data and the current data; a difference sequence calculator configured to sequentially calculate a first difference sequence of the Fourier transform data strings of the voltage data and a second difference sequence of the Fourier transform data strings of the current data; and an impedance calculator configured to calculate an impedance of the DUT based on a ratio of the first difference sequence and the second difference sequence.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 4, 2014
    Assignee: Yokogawa Electric Corporation
    Inventors: Hirofumi Nakanishi, Shuhei Okada
  • Patent number: 8878555
    Abstract: A capacitance measurement device includes a charging control unit for charging a measured capacitor, a discharging control unit for discharging the measured capacitor, a first switch coupled to the measured capacitor and the charging control unit for controlling a connection between the measured capacitor and the charging control unit according to a first switching signal, a second switch coupled to the measured capacitor and the discharging control unit for controlling a connection between the measured capacitor and the discharging control unit according to a second switching signal, a first A/D converter coupled to the measured capacitor for converting a voltage signal on the measured capacitor into a first signal, and a duty cycle detecting circuit coupled to the measured capacitor for converting the voltage signal on the measured capacitor into a count value that represents the capacitance of the measured capacitor and outputting the count value to a processing unit.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: November 4, 2014
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: He-Wei Huang, Chun-Hung Chen, Chih-Yuan Chang
  • Patent number: 8873125
    Abstract: A Micro Electro-Mechanical System (MEMS) interferometer system utilizes a capacitive sensing circuit to determine the position of a moveable mirror. An electrostatic MEMS actuator is coupled to the moveable mirror to cause a displacement thereof. The capacitive sensing circuit senses the current capacitance of the MEMS actuator and determines the position of the moveable mirror based on the current capacitance of the MEMS actuator.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 28, 2014
    Assignee: Si-Ware Systems
    Inventors: Bassam A. Saadany, Amr N. Hafez, Mostafa Medhat, Hisham Haddara
  • Patent number: 8866495
    Abstract: The specification discloses a simple and effective system for tracking position and rotation of an object or portable device located within an electromagnetic field. The electromagnetic field may be produced by a primary coil, which inductively couples with one or more secondary coils located within a portable device. The relative strength of this inductive coupling may be used to determine the position, rotation, or both of the portable device relative to the primary coil.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: October 21, 2014
    Assignee: Access Business Group International LLC
    Inventors: David W. Baarman, Joshua K. Schwannecke, William T. Stoner, Jr., Scott A. Gauche, Ryan Joseph Nussbaum, Nicholas J. VanderStel, Jeffrey Lee VanOss
  • Patent number: 8866488
    Abstract: A device, such as a 3DIC stacked device includes a first device under test (DUT) connected to a first force pad by a first through substrate via (TSV) stack and connected to a first sense pad by a second TSV stack. The device further includes a second DUT stacked above the first DUT and connected to a second force pad and a second force pad by a second third TSV and connected to a second sense pad by a fourth TSV. Functional blocks on either the first or second blocks can be accessed for testing by way of the TSVs. In some applications the TSVs are vertically aligned to form TSV stacks.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mill-Jer Wang, Ching Nen Peng, Hung-Chih Lin, Hao Chen
  • Patent number: 8860448
    Abstract: A probe card includes a plurality of probe pins, and a switch network connected to the plurality of probe pins. The switch network is configured to connect the plurality of probe pins in a first pattern, and reconnect the plurality of probe pins in a second pattern different from the first pattern.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: October 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Han Lee, Mill-Jer Wang, Tan-Li Chou
  • Patent number: 8860446
    Abstract: A probe apparatus may include a plurality of probe pins attached to a probe head portion. Each of the probe pins may be independently movable relative to the probe head portion.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Hiroshi Miyazaki
  • Patent number: 8841926
    Abstract: The subject matter of the invention is a method for a printing machine with a printing device (5), in particular an inkjet printer, for applying liquid (22) onto a print material, with monitoring of the quantity of liquid in a liquid supply unit (1) by measuring the liquid level (23) with a sequential controller, wherein the measurement of the liquid level (23) is performed by a device (11), which detects the presence of liquid at the output of the printing device (5). Another subject matter of the invention is a liquid supply unit (1) for a printing machine with a printing device (5), in particular, an inkjet printer, for applying liquid (22) on a print material, with monitoring of the quantity of liquid in a liquid supply unit (1) by measuring the liquid level (23) with a sequential controller, wherein the measurement device (11) is suitable for measuring a fill level (23) and for controlling a liquid device (3).
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 23, 2014
    Assignee: Phoenix Contact GmbH & Co. KG
    Inventors: Harald Fuetterer, Dieter Stellmach
  • Patent number: 8836350
    Abstract: An internal sampling capacitor of an analog-to-digital converter (ADC) in a digital device is charged to a reference voltage, then some of the voltage charge on the internal sampling capacitor is transferred to an external unknown capacitor through a low resistance switch internal to the digital device. After the charge transfer has stabilized, the voltage charge remaining on the internal sampling capacitor is measured. The difference between the known reference voltage and the voltage remaining on the internal sampling capacitor is used to determine the capacitance value of the external capacitor. Alternatively, the external capacitor may be charged to a reference voltage then the external capacitor is coupled to the internal sampling capacitor, e.g., having no charge or a known charge on it, and the resulting voltage charge on the internal sampling capacitor is measured and used for determining the capacitance value of the external capacitor.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 16, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Dieter Peter
  • Patent number: 8823356
    Abstract: Processes, machines, and articles of manufacture that may serve to enable the detection or determination of alternating line voltages from an alternating power source, such as the power grid, are provided. This automatic sensing may be useful when connections are made to the power grid, such that when connections are made, the connections may be configured to be compatible with the available power source. This automatic sensing may also be useful if power sources change characteristics over time or if devices may be connected to different power sources over time.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 2, 2014
    Assignee: SolarBridge Technologies, Inc.
    Inventor: Patrick L. Chapman
  • Patent number: 8823385
    Abstract: Techniques disclosed herein stress a dielectric layer until a pre-catastrophic, stress induced leakage current (SILC) condition is detected. When the pre-catastrophic SILC condition is detected, the stress is removed to prevent catastrophic failure of the dielectric and its associated device. Because these techniques prevent catastrophic failure of the dielectric layer, engineers can carry out physical failure analysis of the device, which is now known to have some type of defect due to detection of the pre-catastrophic SILC condition. In this way, the techniques disclosed herein allow engineers to more quickly determine an underlying cause of a defect so that yields can be kept at optimal levels.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 2, 2014
    Assignee: Infineon Technologies AG
    Inventor: Martin Kerber
  • Patent number: 8823395
    Abstract: The invention relates to a method for determining a functional area of an electronic textile (100;200). The electronic textile comprises a textile substrate having a first plurality of conductors (108a-b;202a-d), a second plurality of conductors (104a-c;204a-d), and a plurality of capacitors (112;212a-p), each capacitor comprising a conductor from the first plurality of conductors (108a-b;202a-d) and a conductor from the second plurality of conductors (104a-c;204a-d), separated by a dielectric (103a), the capacitors (112;212a-p) being distributed across substantially an entire surface of the electronic textile, wherein each capacitor (112;212a-p) has a capacitance of at least 10 pF.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: September 2, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Rabin Bhattacharya
  • Patent number: 8816700
    Abstract: A partial discharge detection device for detecting and measuring partial discharges in electric systems or components, which delivers signals having a form much resembling that of the radiated pulse, for improved identification and analysis. The device is of small size, totally insulated and self-powered, and allows measurements to be performed with the highest safety with no need for direct connection, thereby allowing operators to stand at a distance and avoid any system shutdown while making measurements. Furthermore, it can also detect and deliver the sync signal, which is obtained by picking up the supply voltage of the discharge generating components.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: August 26, 2014
    Assignee: Prysmian S.p.A.
    Inventors: Antonio Di Stefano, Roberto Candela, Giuseppe Costantino Giaconia, Giuseppe Fiscelli
  • Patent number: 8810260
    Abstract: A system for sensing characteristics of a volume can include a mirror input configured to connect to a first mirror plate. The first mirror plate can be physically isolated from a first monitored space for containing a material. A sense input can be configured to connect to a first sense plate. The first sense plate can be positioned between the first mirror plate and the first monitored space, and can have a surface that faces the first monitored space. A capacitance sense section can generate a first sense value based on a capacitance at the sense input, and a mirror value based on a capacitance at the mirror input.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: August 19, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventor: Yonghong Zhou
  • Patent number: 8810258
    Abstract: A signal acquisition system has a signal acquisition probe having probe tip circuitry coupled to a resistive center conductor signal cable. The resistive center conductor signal cable of the signal acquisition probe is coupled to a compensation system in a signal processing instrument via an input node and input circuitry in the signal processing instrument. The signal acquisition probe and the signal processing instrument have mismatched time constants at the input node with the compensation system having an input amplifier with feedback loop circuitry and a shunt pole-zero pair coupled to the input circuitry providing pole-zero pairs for maintaining flatness over the signal acquisition system frequency bandwidth.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: August 19, 2014
    Assignee: Tektronix, Inc.
    Inventors: Josiah A. Bartlett, Ira G. Pollock, Daniel G. Knierim, Michael D. Stevens