Abstract: A method of magnetizing a permanently magnetizable element associated with a magnetic field sensor structure includes generating a test magnetic field penetrating the magnetic field sensor structure and the permanently magnetizable element, detecting the magnetic field and providing a test signal based on a magnetic field through the magnetic field sensor structure, aligning the test magnetic field and the magnetic field sensor structure with the permanently magnetizable element to each other, until the test signal reaches a set value corresponding to a predetermined magnetized field distribution with respect to the magnetic field sensor structure, and generating a magnetizing field for permanently magnetizing the element to be permanently magnetized, wherein the magnetizing field corresponds to the predetermined magnetic field distribution within a tolerance range.
Type:
Grant
Filed:
June 27, 2008
Date of Patent:
November 22, 2011
Assignee:
Infineon Technologies AG
Inventors:
Udo Ausserlechner, Thomas Bever, Dirk Hammerschmidt, Joachim Weitzel
Abstract: In one aspect the present disclosure relates to a system for measuring an internal resistance of a battery. The system may involve: a processor; a load module responsive to the processor for applying a load across the battery; a current sense subsystem for sensing the current flowing to the load module and generating a sensed current signal in accordance therewith; a multiplexer module in communication with the current sense subsystem for detecting voltages with the load coupled across the battery and uncoupled from the battery, and generating voltage signals in accordance therewith; and a filtering and amplification subsystem responsive to the multiplexer module, for filtering and amplifying a level of each of the voltage signals to produce modified voltage signals for use by the processor in determining the battery internal resistance.
Type:
Grant
Filed:
February 9, 2009
Date of Patent:
November 22, 2011
Assignee:
Liebert Corporation
Inventors:
Edward Winsor Deveau, Marc Jeffrey Radzikowski
Abstract: The present invention relates to circuit for measuring battery voltage and method for battery voltage measurement using the same. In the circuit for measuring battery voltage and method for battery voltage measurement using the same, three or more capacitors, which form a closed loop and are sequentially connected, are provided, and voltages of voltage sources are measured by using the three or more capacitors in turn, which prevents measurement errors from occurring due to residual charges in the capacitors and enables more precise measurement. Further, according to the present invention, since the three or more capacitors are alternately charged and discharged, the delay in time is decreased, and the voltages of the plurality of voltage sources can be measured at one time. Therefore, it is possible to reduce the amount of time required to measure battery voltage.
Abstract: One embodiment relates to a method of manufacturing a magnetic sensor. In the method, an engagement surface is provided. A magnet body is formed over the engagement surface by gradually building thickness of a magnetic material. The magnet body has a magnetic flux guiding surface that substantially corresponds to the engagement surface. Other apparatuses and methods are also set forth.
Abstract: A magnetic field sensor includes a linear magnetic field sensor to produce a voltage proportional to a sensed magnetic field and an interface having only two terminals for external connections. The two terminals of the interface include a power supply terminal and a ground terminal. The interface includes a voltage-controlled current generating device that is connected between the two terminals and is controlled by the voltage to provide a current signal that is proportional to the sensed magnetic field.
Type:
Grant
Filed:
March 6, 2008
Date of Patent:
November 8, 2011
Assignee:
Allegro Microsystems, Inc.
Inventors:
Michael C. Doogue, Jonathan Lamarre, Monica J. Thomas
Abstract: A probe for a magnetic remanence measurement method, in particular for detecting foreign material deposits and inclusions in hollow spaces, the hollow spaces being formed in a non-ferromagnetic material and the foreign material deposits and inclusions being made of a ferromagnetic material, wherein the probe includes at least one magnetic field sensor, at least one first and one second magnet, the magnets being configured before the at least one magnetic field sensor in a direction of introduction into the hollow space, and being situated relative to one another in such a way that their pole axes run non-parallel to one another.
Type:
Grant
Filed:
April 17, 2008
Date of Patent:
November 1, 2011
Assignee:
MTU Aero Engines GmbH
Inventors:
Thomas Beller, Wolf-Dieter Feist, Johann Hinken, Christian Ziep
Abstract: An arrangement for influencing and/or detecting magnetic particles, and/or calibrating such an arrangement includes generating a magnetic selection field having a magnetic field strength pattern such that a first sub-zone having a low magnetic field strength and a second sub-zone having a higher magnetic field strength are formed in the region of action. A driver changes the position in space of the two sub-zones in the region of action by magnetic drive field so that the magnetization of the magnetic particles changes locally. The arrangement includes a drive signal chain, a detection signal chain, and a receiver for acquiring detection signals that depend on the magnetization in the region of action. The magnetization is influenced by the change in the position in space of the first and second sub-zones. A compensation controller provides a compensation signal to the drive signal chain and/or to the detection signal chain by a coupler.
Abstract: A position detection device includes a magnetic generation unit that has: a first magnetism generating section that is provided on one end side along a predetermined direction and generates magnetism; a second magnetism generating section that is provided on another end side along the predetermined direction and generates magnetism of polarity different from that of the first magnetism generating section; and a low magnetism section that is formed in the first magnetism generating section and the second magnetism generating section such that a width of the low magnetism section varies along the predetermined direction to generate magnetism lower than those of the first magnetism generating section and the second magnetism generating section, and a magnetic detection unit that is capable of moving relative to the magnetic generation unit along the predetermined direction and that detects the magnetism generated by the first magnetism generating section and the second magnetism generating section.
Abstract: A method of method of logging an invaded geological formation comprises the steps of: (i) operating plural receivers in order to receive signals generated by one or more transmitters and thereby create logs of overlapping lengths of a bore formed in the said geological formation, the respective said receivers logging distinct depths of penetration, as previously defined, of the geological formation measured with respect to the bore; (ii) recording the resultant values in a two-dimensional plot one of whose axes represents the respective depth of penetration of the said formation to which each said log corresponds; (iii) establishing whether the resulting plot appears to approach an asymptote; and if so (iv) determining the value of the asymptote.
Abstract: Oil-based mud imaging systems and methods having leakage current compensation. In some embodiments, disclosed logging systems include a logging tool in communication with surface computing facilities. The logging tool is provided with a sensor array having at least two voltage electrodes positioned between at least two current electrodes that create an electric field in a borehole wall, and is further provided with electronics coupled to the current electrodes to determine a differential voltage between the voltage electrodes in response to different current frequencies from the current electrodes. From the voltage measurements at different frequencies, the computing facilities determine borehole wall resistivity as a function of depth and azimuth, and may display the resistivity as a borehole wall image.
Type:
Grant
Filed:
December 11, 2006
Date of Patent:
October 4, 2011
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Guoyu (David) Hu, Michael S. Bittar, William J. Schaecher
Abstract: The invention relates to a measuring device, in particular a hand-held measuring device for locating objects enclosed in a medium, using high-frequency electromagnetic signals. Said device comprises a housing (82) and at least one high-frequency sensor, which is located in the housing and has a first antenna assembly (10) containing at least one first antenna element (12), the latter preferably emitting and/or receiving signals on a first polarization plane. According to the invention, the antenna assembly (10) has at least one additional antenna element (14), whose polarization plane is rotated in relation to the polarization plane of the first antenna element (12).
Type:
Grant
Filed:
October 20, 2006
Date of Patent:
September 27, 2011
Assignee:
Robert Bosch GmbH
Inventors:
Reiner Krapf, Heiko Braun, Michael Mahler, Christoph Wieland, Ulli Hoffmann
Abstract: An aspect of the present invention provides a magnetic sensor which is operated better at a high temperature range not lower than 300° C. compared with a conventional magnetic sensor. A operating layer having a heterojunction interface is formed by laminating a first layer made of GaN whose electron concentration is not more than 1×1016/cm3 at room temperature and a second layer made of AlxGa1-xN (0<x?0.3). Therefore, in a two-dimensional electron gas region, carrier mobility is further enhanced while a carrier concentration is further lowered. Accordingly, there is realized a Hall element which can be used with measurement sensitivity similar to that at room temperature by constant-current drive even at a high temperature, while having the high measurement sensitivity in both the constant-current drive and constant-voltage drive at room temperature.
Abstract: A method for magnetizing a wellbore tubular includes magnetizing the tubular at three or more discrete locations on the tubular. In exemplary embodiments the magnetized wellbore tubular includes at least one pair of opposing magnetic poles located between longitudinally opposed ends of the tubular. Wellbore tubulars magnetized in accordance with this invention may be coupled to one another to provide a magnetic profile about a section of a casing string. Passive ranging measurements of the magnetic field about the casing string may be utilized to survey and guide drilling of a twin well. Such an approach advantageously obviates the need for simultaneous access to both wells.
Abstract: An exemplary portable electronic device includes a main body and a battery therein. The main body has a wind power generating and charging module mounted therein. The wind power generating and charging module includes a wind turbine generator and a control circuit. The control circuit is configured for controlling the wind generator to charge the battery.
Abstract: A charger includes a shell assembly defining a receiving space therein, a locating body fixed in the shell assembly and defining a locating cavity and a plurality of locating fillisters communicating with the locating cavity, and a plug pivotally received in the receiving space and having a base portion and at least two conductive blades fixed partially in the base portion. The base portion protrudes oppositely to form a pair of pivoting shafts pivoted in the shell assembly. A free end of one of the pivoting shafts defines a locating pillar pivoted in the locating cavity of the locating body. A side surface of the locating pillar protrudes outward to form a plurality of locating ribs buckled into the corresponding locating fillisters of the locating body when the conductive blades of the plug are completely rotated into and out of the receiving space.
Abstract: A system and method for sensing the periodic position of one or more objects, such as rotating blades of a turbine. The system includes a passive eddy current sensing unit having one or more magnets and first and second cores around which first and second coils are wound, respectively, which together generate first and second magnetic fields. The sensing unit is positioned so that the object periodically passes through the first and second magnetic fields in succession, and the first and second coils consequently produce first and second output signals, respectively. Each coil is individually connected to a processing circuitry that receives each of the first and second output signals. The circuitry electronically combines the first and second output signals so that common mode signals thereof electronically subtract from each other to eliminate from output of the circuitry any electromagnetic interference noise present in the first and second output signals.
Abstract: A power actuator system for a movable vehicle panel such as a lift gate assembly includes a position sensor that detects the pivotal movement of a strut mechanism of the power lift gate assembly relative to the host vehicle. A rotary sensor is coupled directly to an end component of the strut mechanism and provides signals that indicate the total amount of pivotal or rotary movement of the strut mechanism and the lift gate during the opening and closing of the lift gate. The signals provide information to determine the absolute position of the strut and the lift gate for processing in the vehicle's electronic control unit.
Type:
Grant
Filed:
February 19, 2008
Date of Patent:
August 30, 2011
Assignee:
Strattec Power Access LLC
Inventors:
Thomas Lawson Booth, Howard Warren Kuhlman
Abstract: A battery analysis system includes a control module, a measurement module, and a pulse power module. The control module controls current to a battery to one of charge and discharge the battery. The measurement module determines N voltages across the battery at N times during a period when the control module controls the current and when the battery is at a predetermined temperature and a predetermined state of charge. N is an integer greater than 1. The pulse power module determines N resistances corresponding to the current and the N voltages across the battery and determines a pulse power value of the battery based on the N resistances. The pulse power value indicates a dynamic power of the battery to one of charge and discharge.
Abstract: A method and apparatus of constructing a signal for a controlled source electromagnetic survey is described. In one embodiment, a method is described that includes determining a first waveform and a second waveform, the first waveform and second waveform related to a combined frequency spectrum and bandwidth associated with a geophysical survey line. Then, a signal is constructed by sequencing the first waveform with the second waveform. This signal may be utilized in a transmitter, which may be pulled by a vessel along the geophysical survey line.
Type:
Grant
Filed:
August 28, 2006
Date of Patent:
August 30, 2011
Assignee:
ExxonMobil Upstream Research Company
Inventors:
Xinyou Lu, Scott C. Hornbostel, Dennis E. Willen
Abstract: A magnetic field sensor for low power applications includes a magnetic field sensing element that, during sample intervals, provides a signal proportional to a sensed magnetic field and also includes a comparator circuit that, during the sample intervals, compares the magnetic field signal to threshold levels to generate a sensor output signal indicative of a strength of the magnetic field. According to a dual sample rate feature, initially the magnetic field signal is sampled at a first predetermined sample rate and, following detection of a transition of the sensor output signal, is sampled at a second, faster predetermined sample rate for a predetermined interval. According to a user-programmable sample rate feature, a user may select to operate the sensor at a fixed, predetermined sample rate or at a user-specified sample rate. The magnetic field sensor may also or alternatively detect the speed and/or direction of rotation of a rotating magnetic article.
Type:
Grant
Filed:
June 25, 2007
Date of Patent:
August 30, 2011
Assignee:
Allegro Microsystems, Inc.
Inventors:
Michael C. Doogue, Shaun D. Milano, Paul David