Patents Examined by Bradley Smith
  • Patent number: 11309249
    Abstract: The present application provides a semiconductor package with air gaps for reducing capacitive coupling between conductive features and a method for manufacturing the semiconductor package. The semiconductor package includes a first semiconductor structure and a second semiconductor structure bonded with the first semiconductor structure. The first semiconductor structure has a first bonding surface. The second semiconductor structure has a second bonding surface partially in contact with the first bonding surface. A portion of the first bonding surface is separated from a portion of the second bonding surface, a space between the portions to of the first and second bonding surfaces is sealed and forms an air gap in the semiconductor package.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: April 19, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11309454
    Abstract: A deep ultraviolet LED with a design wavelength ?, including a reflecting electrode layer (Au), a metal layer (Ni), a p-GaN contact layer, a p-block layer made of a p-AlGaN layer, an i-guide layer made of an AlN layer, a multi-quantum well layer, an n-AlGaN contact layer, a u-AlGaN layer, an AlN template, and a sapphire substrate that are arranged in this order from a side opposite to the sapphire substrate, in which the thickness of the p-block layer is 52 to 56 nm, a two-dimensional reflecting photonic crystal periodic structure having a plurality of voids is provided in a region from the interface between the metal layer and the p-GaN contact layer to a position not beyond the interface between the p-GaN contact layer and the p-block layer in the thickness direction of the p-GaN contact layer, the distance from an end face of each of the voids in the direction of the sapphire substrate to the interface between the multi-quantum well layer and the i-guide layer satisfies ?/2n1Deff (where ? is the design wav
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 19, 2022
    Assignees: Marubun Corporation, Shibaura Machine Co., Ltd., RIKEN, ULVAC, Inc., Tokyo Ohka Kogyo Co., Ltd., Nippon Tungsten Co., Ltd., Dai Nippon Printing Co., Ltd., Dowa Holdings Co., Ltd.
    Inventors: Yukio Kashima, Eriko Matsuura, Mitsunori Kokubo, Takaharu Tashiro, Hideki Hirayama, Noritoshi Maeda, Masafumi Jo, Ryuichiro Kamimura, Yamato Osada, Kanji Furuta, Takeshi Iwai, Yohei Aoyama, Yasushi Iwaisako, Tsugumi Nagano, Yasuhiro Watanabe
  • Patent number: 11302531
    Abstract: Disclosed herein are methods for exfoliation of single crystals allowing for growth of high crystalline quality on the exfoliated surfaces for III-V photovoltaics. Also disclosed herein are methods for growing GaAs (111) on layered-2D Bi2Se3 (0001) substrates in an MOCVD reactor.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: April 12, 2022
    Assignees: Alliance for Sustainable Energy, LLC, Colorado School of Mines
    Inventors: Andrew Gordon Norman, Celeste Louise Melamed, Eric Steven Toberer, William Edwin McMahon
  • Patent number: 11289374
    Abstract: Processing methods comprise forming a gap fill layer comprising tungsten or molybdenum by exposing a substrate surface having at least one feature thereon sequentially to a metal precursor and a reducing agent comprising hydrogen to form the gap fill layer in the feature, wherein there is not a nucleation layer between the substrate surface and the gap fill layer.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yihong Chen, Kelvin Chan, Xinliang Lu, Srinivas Gandikota, Yong Wu, Susmit Singha Roy, Chia Cheng Chin
  • Patent number: 11289623
    Abstract: The method of manufacturing a light emitting element includes: providing a wafer including a sapphire substrate and a semiconductor structure; scanning the wafer to irradiate laser light into the substrate to form modified regions for cleaving the wafer into light emitting elements having a hexagonal shape in a top view; and cleaving the wafer. The scanning of the wafer includes: a first scanning to form first modified regions along a first direction parallel to first and second sides of the hexagonal shape, a second scanning, and a third scanning. The first scanning includes a first irradiation where laser light is scanned from a first end side of the first side to a first location between first and second ends of the first side, and a second irradiation where laser light is scanned from a second end side to a second location between the second and first ends.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 29, 2022
    Assignee: NICHIA CORPORATION
    Inventor: Akihisa Teramura
  • Patent number: 11282819
    Abstract: A semiconductor device includes a first chip, divided into a plurality of regions, including a plurality of first pads and a plurality of first test pads in each of the plurality of regions; and a second chip including a plurality of second pads corresponding to the plurality of first pads and a plurality of second test pads corresponding to the plurality of first test pads, and bonded onto the first chip such that the plurality of second pads are coupled to the plurality of first pads. The second chip includes a voltage generation circuit linked to the plurality of second pads, that provides a compensated voltage to the plurality of second pads for each of the plurality of regions, based on a voltage drop value for each region due to a contact resistance between the plurality of first test pads and the plurality of second test pads.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: March 22, 2022
    Assignee: SK hynix Inc.
    Inventors: Sung Lae Oh, Sang Hyun Sung, Kwang Hwi Park, Je Hyun Choi
  • Patent number: 11282789
    Abstract: A semiconductor structure, a memory device, a semiconductor device and a semiconductor device manufacturing method are provided. The semiconductor structure includes a die, a power bus and a first pad assembly. The power bus is disposed on the die and extends in a predetermined direction. The first pad assembly is arranged on one side of the power bus. The first pad assembly includes at least four pads separated from one another along the predetermined direction by the first, the second and the third gaps. The first gap and the second gap both have a width larger than a width of the third gap and the first pad assembly includes a power pad coupled to the power bus and located between the first gap and the second gap. The power pad and the first and second gaps are all located between opposing ends of the power bus.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 22, 2022
    Assignee: Changxin Memory Technologies, Inc.
    Inventor: Ling-Yi Chuang
  • Patent number: 11270978
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 11264179
    Abstract: The present disclosure describes solution methods for manufacturing perovskite halide films for use in solar cells. The methods include the use of additives that facilitate the formation of transitory, intermediate films that are later transformed into the final target perovskite halide films, such that the final films provide improved physical characteristics and operational performance.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: March 1, 2022
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Kai Zhu, Joseph M. Luther, Yixin Zhao
  • Patent number: 11264533
    Abstract: A method for manufacturing a light-emitting module includes a step of providing a bonded board including a board including, on a first surface, a circuit pattern and wiring pads that are continuous with the circuit pattern and each have bottomed holes and light-emitting segments connected on a second surface of the board with an adhesive sheet interposed therebetween and including an array of light-emitting devices; a step of supplying electrically conductive paste inside the bottomed holes and on portions of the surface of the wiring pad around the bottomed holes through openings of a mask; and a step of performing thermal compression to harden the electrically conductive paste such that the thickness of the electrically conductive paste on the portions of the surface of the wiring pad is smaller than the electrically conductive paste at the timing of being disposed through the openings of the mask.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: March 1, 2022
    Assignee: Nichia Corporation
    Inventors: Eiko Minato, Koji Taguchi, Yumiko Kameshima, Masaaki Katsumata
  • Patent number: 11264240
    Abstract: A semiconductor device is manufactured by implanting impurity ions in one surface of a semiconductor substrate made of silicon carbide; irradiating a region of the semiconductor substrate implanted with the impurity ions with laser light of a wavelength in the ultraviolet region; and forming, on a surface of a high-concentration impurity layer formed by irradiating with the laser light, an electrode made of metal in ohmic contact with the high-concentration impurity layer. When irradiating with the laser light, a first concentration peak of the impurity ions that exceeds a solubility limit concentration of the impurity ions in silicon carbide is formed in a surface region near the one surface of the semiconductor substrate within the high-concentration impurity layer.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: March 1, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Kenichi Iguchi, Haruo Nakazawa
  • Patent number: 11264530
    Abstract: Described are light emitting diode (LED) devices having patterned substrates and methods for effectively growing epitaxial III-nitride layers on them. A nucleation layer, comprising a III-nitride material, is grown on a substrate before any patterning takes place. The nucleation layer results in growth of smooth coalesced III-nitride layers over the patterns.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 1, 2022
    Assignee: LUMILEDS LLC
    Inventors: Isaac Wildeson, Toni Lopez, Hee-Jin Kim, Robert Armitage, Parijat Deb
  • Patent number: 11257984
    Abstract: A phosphor component that includes a plurality of nanowires absorbing light at one wavelength and emitting light at a longer wavelength, the longer wavelength being from about 495 nm to about 780 nm, each one of the plurality of nanowires being one of a nanowire described by a composition formula of InxGa1-xN, x being between about 0.1 to about 0.6 or a GaN nanowire having InxGa1-xN discs in a nanowire structure, x being between about 0.1 to about 0.8 and a light emitting device using the phosphor component are disclosed.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: February 22, 2022
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventor: Wei Guo
  • Patent number: 11251096
    Abstract: A method for measuring overlay between an interest level and a reference level of a wafer includes applying a magnetic field to a wafer, detecting at least one residual magnetic field emitted from at least one registration marker of a first set of registration markers within the wafer, responsive to the detected one or more residual magnetic fields, determining a location of the at least one registration marker of the first set registration markers, determining a location of at least one registration marker of a second set of registration markers, and responsive to the respective determined locations of the at least one registration marker of the first set of registration markers and the at least one registration marker of the second set of registration markers, calculating a positional offset between an interest level of the wafer and a reference level of the wafer. Related methods and systems are also disclosed.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: February 15, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Nikolay A. Mirin, Robert Dembi, Richard T. Housley, Xiaosong Zhang, Jonathan D. Harms, Stephen J. Kramer
  • Patent number: 11250336
    Abstract: Various systems and methods of initiating and performing contextualized AI inferencing, are described herein. In an example, operations performed with a gateway computing device to invoke an inferencing model include receiving and processing a request for an inferencing operation, selecting an implementation of the inferencing model on a remote service based on a model specification and contextual data from the edge device, and executing the selected implementation of the inferencing model, such that results from the inferencing model are provided back to the edge device. Also in an example, operations performed with an edge computing device to request an inferencing model include collecting contextual data, generating an inferencing request, transmitting the inference request to a gateway device, and receiving and processing the results of execution. Further techniques for implementing a registration of the inference model, and invoking particular variants of an inference model, are also described.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Francesc Guim Bernat, Suraj Prabhakaran, Kshitij Arun Doshi, Da-Ming Chiang, Joe Cahill
  • Patent number: 11245053
    Abstract: Micro-LED structures for full color displays and methods of manufacturing the same are disclosed. An apparatus for a micro-LED display includes a first portion of a nanorod and a second portion of the nanorod. The first and second portions including gallium and nitrogen. The apparatus includes a polarization inversion layer between the first portion and the second portion. The apparatus includes a cap at an end of the nanorod. The cap including a core and an active layer. The core including gallium and nitrogen. The active layer including indium.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: February 8, 2022
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Khaled Ahmed, Anup Pancholi
  • Patent number: 11239115
    Abstract: Partial self-aligned contact structures are provided. In one aspect, a method of forming a semiconductor device includes: patterning fins in a substrate; forming a gate(s) over the fins, separated from source/drains by first spacers, wherein a lower portion of the gate(s) includes a workfunction-setting metal, and an upper portion of the gate(s) includes a core metal between a metal liner; recessing the metal liner to form divots in the upper portion of the gate(s) in between the first spacers and the core metal; forming second spacers in the divots such that the first spacers and the second spacers surround the core metal in the upper portion of the gate(s); forming lower source/drain contacts in between the first spacers over the source/drains; recessing the lower source/drain contacts to form gaps over the lower source/drain contacts; and forming source/drain caps in the gaps. A semiconductor device is also provided.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: February 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Veeraraghavan Basker, Alexander Reznicek, Junli Wang
  • Patent number: 11239340
    Abstract: A semiconductor arrangement and method of formation are provided. The semiconductor arrangement comprises a conductive contact in contact with a substantially planar first top surface of a first active area, the contact between and in contact with a first alignment spacer and a second alignment spacer both having substantially vertical outer surfaces. The contact formed between the first alignment spacer and the second alignment spacer has a more desired contact shape then a contact formed between alignment spacers that do not have substantially vertical outer surfaces. The substantially planar surface of the first active area is indicative of a substantially undamaged structure of the first active area as compared to an active area that is not substantially planar. The substantially undamaged first active area has a greater contact area for the contact and a lower contact resistance as compared to a damaged first active area.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Tai-I Yang, Tien-Lu Lin, Wai-Yi Lien, Chih-Hao Wang, Jiun-Peng Wu
  • Patent number: 11239113
    Abstract: The present disclosure discloses an array substrate and a preparation method thereof. After a first passivation layer is formed, residual gas is directly drawn out of a closed chamber to prevent the residual gas from reacting to form an unstable layer on the first passivation layer. Furthermore, after the residual gas is drawn out, a preset gas fills the closed chamber, and is retained for a preset time period and then drawn out. The retaining of the preset gas can effectively alleviate the damage to the passivation layer by static electricity.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: February 1, 2022
    Assignees: Beijing BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Wei Chen, Zhiqiang Zhang, Hanqing Liu, Yangheng Li, Mingming Jia, Xin Li, Yong Song
  • Patent number: 11239277
    Abstract: A display panel comprises: an array substrate comprising a display area and a trace area located around the display area; a light-emitting layer located in the display area and electrically connected to a first side of the array substrate; a fanout circuit located in the trace area; a fanout circuit base layer disposed between the fanout circuit and the array substrate; and a driver chip located at a second side of the array substrate; wherein the fanout circuit and the fanout circuit base layer are bent from the first side to the second side along a sidewall of the array substrate, the fanout circuit is electrically connected to the array substrate at the first side, and the fanout circuit is electrically connected to the driver chip at the second side.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 1, 2022
    Assignee: Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd.
    Inventor: Macai Lu