Patents Examined by Brian D Walck
  • Patent number: 11692273
    Abstract: A method applies a titanium aluminide alloy on a substrate. The titanium aluminide alloy has a gamma phase proportion of at least 50% based on an overall composition of the titanium aluminide. The method includes: pretreating a surface of the substrate; heat treating titanium aluminide powder particles at a temperature range of 600° C. to 1000° C. to increase the proportion of the gamma phase; cold spraying the heat-treated powder particles onto the substrate or a part of the substrate to form a layer of titanium aluminide; and thermally post-treating the layer of titanium aluminide applied to the substrate.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: July 4, 2023
    Assignee: LUFTHANSA TECHNIK AG
    Inventors: Jan Oke Peters, Thomas Maria Gartner, Matthias Mecklenburg, Marcus Willi Rackel, Emine Bakan, Georg Mauer
  • Patent number: 11692247
    Abstract: This application relates to a wrought magnesium alloy and a method of manufacturing the same, and a high-speed extrusion method for manufacturing an extrudate using the same. In one aspect, the magnesium alloy includes 2.0 wt % to 8.0 wt % of bismuth (Bi), 0.5 wt % to 6.5 wt % aluminum (Al), the balance of magnesium (Mg), and inevitable impurities. Using a magnesium alloy for high-speed extrusion according to the present disclosure, it is possible to manufacture a magnesium alloy extrudate having a good surface quality without hot cracking even under high-temperature (extrusion temperature: 300° C. to 450° C.) and high-speed (die-exit speed: 40 m/min to 80 m/min) extrusion conditions. Furthermore, the extrudate manufactured from the magnesium alloy exhibits greatly improved strength and elongation compared to existing magnesium extrudates even when the alloy does not contain a rare-earth metal.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: July 4, 2023
    Assignee: Kyungpook National University Industry-Academic Cooperation Foundation
    Inventors: Sung Hyuk Park, Jong Bin Go, Sang Cheol Jin
  • Patent number: 11692256
    Abstract: Adding multiple solute elements could create fracture origin through formation of intermetallic compound due to bonding of added elements. While maintaining microstructure for activating non-basal dislocation movement, additive elements not to create fracture origin, but to promote grain boundary sliding are preferably found from among inexpensive and versatile elements. Provided is Mg-based wrought alloy material including two or more among group consisting of Mn, Zr, Bi, and Sn; and Mg and unavoidable constituents, having excellent room-temperature ductility and characterized by having finer crystal grain size in Mg parent phase during room-temperature deformation and in that mean grain size in matrix thereof is 20 ?m or smaller; rate of (?max??bk)/?max (maximum load stress (?max), breaking stress (?bk)) in stress-strain curve obtained by tension-compression test of the wrought material is 0.2 or higher; and resistance against breakage shows 200 kJ or higher.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: July 4, 2023
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hidetoshi Somekawa, Yoshiaki Osawa
  • Patent number: 11692231
    Abstract: A method for producing a homogenous molten composition and a fluid product is disclosed. For example, the method includes producing a first molten metal composition in an enclosed volume, contacting a hydrocarbon reactant with the first molten metal composition, decomposing the hydrocarbon reactant into at least one fluid product and carbon, forming a metal alloy from a mixture of the carbon and the first molten metal composition, and separating a homogenous second molten composition from the metal alloy.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: July 4, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Divyaraj Desai, Jessica Louis Baker Rivest, Dane Andrew Boysen, Rahul Pandey, Eugene Shin Ming Beh
  • Patent number: 11680299
    Abstract: A method for producing a homogenous molten composition and a fluid product is disclosed. For example, the method includes producing a first molten metal composition in an enclosed volume, contacting a hydrocarbon reactant with the first molten metal composition, decomposing the hydrocarbon reactant into at least one fluid product and carbon, forming a metal alloy from a mixture of the carbon and the first molten metal composition, and separating a homogenous second molten composition from the metal alloy.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: June 20, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Divyaraj Desai, Jessica Louis Baker Rivest, Dane Andrew Boysen, Rahul Pandey, Eugene Shin Ming Beh
  • Patent number: 11680301
    Abstract: An ultra-high strength maraging stainless steel with nominal composition (in mass) of C?0.03%, Cr: 13.0-14.0%, Ni: 5.5-7.0%, Co: 5.5-7.5%, Mo: 3.0-5.0%, Ti: 1.9-2.5%, Si: ?0.1%, Mn: ?0.1%, P: ?0.01%, S: ?0.01%, and Fe: balance. The developed ultra-high strength maraging stainless steel combines ultra-high strength (with ?b?2000 MPa, ?0.2?1700 MPa, ??8% and ??40%), high toughness (KIC?83 MPa·m½) and superior salt-water corrosion resistance (with pitting potential Epit?0.15 (vs SCE)). Therefore, this steel is suitable to make structural parts that are used in harsh corrosive environments like marine environment containing chloride ions, etc.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: June 20, 2023
    Assignees: The Boeing Company, Institute of Metal Research
    Inventors: Jialong Tian, Ke Yang, Wei Wang, Yiyin Shan, Wei Yan
  • Patent number: 11673195
    Abstract: The invention relates to a method for manufacturing an equipment part, comprising the following steps: providing a substrate, an upper face of which includes a large main surface; providing a computer model comprising spatial coordinates of said main surface and a second portion of the equipment part; then additive manufacturing of the second portion from the main surface, so as to secure said main surface and said second portion; then cutting in a thickness of the substrate to obtain a thin plate including the main surface secured to the second portion of the equipment part.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: June 13, 2023
    Assignee: LISI AEROSPACE ADDITIVE MANUFACTURING
    Inventors: Bruno Sébastien Eyrignoux, Fabian Magnin
  • Patent number: 11674192
    Abstract: A method of making steel by deeply dephosphorization in a hot metal tank and decarburization using semi-steel with nearly zero phosphorus load in a converter includes the following steps: putting an efficient dephosphorization agent into the hot metal tank in advance, and conducting dephosphorization during blast furnace tapping and transportation of blast furnace hot metal by the hot metal tank to obtain semi-steel with [P] less than 0.04 wt. % and [C] greater than or equal to 3.5 wt. %; and removing dephosphorization slag, and pouring the semi-steel into the converter for decarburization to obtain molten steel. The efficient dephosphorization agent includes iron oxide scale, lime, and composite calcium ferrite. According to the method, a phosphorus content of the blast furnace hot metal is reduced to be less than or equal to 0.04 wt. % through the efficient dephosphorization agent.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: June 13, 2023
    Assignee: University of Science and Technology Beijing
    Inventors: Yanling Zhang, Zheng Zhao, Weifeng Zhang, Zhonghua Zhan
  • Patent number: 11674199
    Abstract: Pyrometallurgic process for obtaining lithium compounds and intermediates, the process being characterized by comprising the steps of a) contacting lithium aluminosilicate particles with at least a fluorine solid compound, b) heating until a temperature of 25 to 900° C. obtaining a solid mixture and c) carrying out at least a leaching process of the mixture in step b).
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: June 13, 2023
    Assignees: CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS CONICTE, UNIVERSIDAD NACIONAL DE CUYO
    Inventors: Mario Humberto Rodriguez, Alexander Cristian Resentera Beiza, Gustavo Daniel Rosales
  • Patent number: 11674202
    Abstract: The invention discloses a high-throughout continuous casting and rolling Al—Mg—Mn alloy plate for ships and the preparation process thereof. The chemical components of the Al—Mg—Mn alloy in percentage by mass percentage are: Mg: 0.80-2.80%, Mn: 0.00-1.40%, Zr: 0.10-0.50%, Cr: 0.15-0.35%, Sr: 0.00-0.10%, Er: 0.00-0.60%, Si: 0.10-0.40%, Cu: 0.01-0.10%, Ti: 0.01-0.05%, Fe: 0.00-0.40% and the rest is Al. The preparation processes mainly include smelting and melt treatment, continuous casting, continuous rolling and cold rolling. The invention solves the problems of easy segregation, low strength and toughness and poor formability in the preparation of high-throughout continuous casting and rolling Al—Mg—Mn plates for ships.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: June 13, 2023
    Assignee: ZHENGZHOU UNIVERSITY
    Inventors: Shaokang Guan, Guangxi Lu, Cong Xu
  • Patent number: 11668298
    Abstract: A method of manufacturing a slide of a variable oil pump for a vehicle includes preparing a molded body for a slide of a variable oil pump using prealloy powder including, in percent (%) by weight of the entire composition, 0.45 to 0.55% of carbon (C), 2.8 to 3.2% of chromium (Cr), 0.45 to 0.55% of molybdenum (Mo), 0.35 to 0.5% of manganese (Mn), 0.1 to 0.25% of sulfur (S), and the remainder of iron (Fe) and inevitable impurities. A sintered body is prepared by sintering the molded body. The sintered body is slowly cooled such that a temperature of the sintered body reaches a first temperature range and rapidly cooled when the first temperature range is reached.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: June 6, 2023
    Assignees: Hyundai Motor Company, Kia Motors Cororation
    Inventor: Haksoo Kim
  • Patent number: 11667999
    Abstract: A method for producing a case-hardened martensitic stainless steel article includes: providing an article comprised, at least in part, of a martensitic stainless steel, carburizing the article within a temperature range of 1625° F.-1680° F. (885° C.-916° C.), and then carbo-nitriding the article within a temperature range of 1575° F.-1625° F. (857° C.-885° C.). An article, such as a bearing ring, comprising such a case-hardened martensitic stainless steel is also disclosed.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: June 6, 2023
    Assignees: UES INC., MIDWEST THERMAL-VAC INC., AKTIEBOLAGET SKF
    Inventors: Hitesh K. Trivedi, Frederick J. Otto, Timothy W. Piazza, Bryan A. McCoy, Rabi S. Bhattacharya
  • Patent number: 11661637
    Abstract: A method for forming a cold rolled, coated and post batch annealed steel sheet is provided. The method includes cold rolling a steel sheet; coating the cold rolled steel sheet with a zinc or zinc alloy coating, the cold rolled, coated steel sheet having an initial hole expansion and an initial yield strength and post batch annealing the cold rolled, coated steel sheet at a tempering temperature in a range from 150 to 650° C., the post batch annealed steel sheet having a final hole expansion and a final yield strength. The steel sheet includes (in wt. %)C-0.1-0.3%, Mn-1-3%, Si-0.5-3.5%, Al-0.05-1.5% and Mo+Cr being between 0-1.0%. The final hole expansion is at least 80% greater than the initial hole expansion and the final yield strength is at least 30% greater than the initial yield strength.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: May 30, 2023
    Assignee: ArcelorMittal
    Inventor: Hyun Jo Jun
  • Patent number: 11649514
    Abstract: Proposed is a method for removing phosphorus from a phosphorus-containing substance which is applicable in an industrial scale so as to effectively reduce phosphorus contained in the phosphorus-containing substance. In this method, the phosphorus-containing substance used as a raw material for metal smelting or metal refining is reacted with a nitrogen-containing gas at a treatment temperature T (° C.) which is lower than a melting temperature (Tm) of the substance, so that phosphorus is removed preferably in the form of phosphorus nitride (PN). In this regard, a nitrogen partial pressure and an oxygen partial pressure in the nitrogen-containing gas are preferably controlled, thereby reducing a load of dephosphorization process, for example.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 16, 2023
    Assignee: JFE Steel Corporation
    Inventors: Kenji Nakase, Yoshie Nakai, Naoki Kikuchi
  • Patent number: 11639540
    Abstract: The present disclosure is directed to a gold recovery process in which activated carbon or another carbon-based material is used to accelerate thiosulfate leaching of gold from a gold-bearing material. In some embodiments, the gold recovery process comprises providing particulate activated carbon or another carbon-based material, providing a precious metal-bearing material, contacting the precious metal-bearing material with the particulate carbon-based material, thiosulfate, an anion exchange resin, and an oxidant to form a slurry comprising a slurried precious metal-bearing material, and leaching a precious metal from the slurried precious metal-bearing material.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 2, 2023
    Assignee: BARRICK GOLD CORPORATION
    Inventors: Oscar German Olvera Olmedo, Daniel Feliks Raphael Domanski
  • Patent number: 11634798
    Abstract: A low modulus corrosion-resistant alloy is disclosed, and comprises five principal elements, wherein the five principal elements are Zr, Nb, Ti, Mo, and Sn. Experimental data reveal that, samples of the low modulus corrosion-resistant alloy all include following characteristics: hardness of at least 250 HV, Young's modulus less than 100 GPa, yield strength greater than 600 MPa, and critical pitting potential greater than 1.3V. As a result, experimental data have proved that this low modulus corrosion-resistant alloy has a significant potential for application in the manufacture of biomedical articles including medical devices and surgical implants. In addition, this low modulus corrosion-resistant alloy is also suitable for application in the manufacture of various industrially-producible articles, including springs, coils, wires, clamps, fasteners, blades, valves, elastic sheets, spectacle frames, sports equipment, and other high-strength low-modulus corrosion-resistant structural materials.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: April 25, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventor: Jien-Wei Yeh
  • Patent number: 11628500
    Abstract: A metal powder producing apparatus comprising a melted metal supplying part discharging a melted metal, a cylinder body provided below the melted metal supplying part, and a cooling liquid layer forming part forming a flow of a cooling liquid for cooling the melted metal discharged from the melted metal supplying part along an inner circumference face of the cylinder body, wherein the cooling liquid layer forming part has a primary pressure reservoir, and the primary pressure reservoir is provided on an outer circumference part of the cylinder body.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: April 18, 2023
    Assignee: TDK CORPORATION
    Inventors: Kenji Horino, Kazuhiro Yoshidome, Akihiro Harada, Hiroyuki Matsumoto
  • Patent number: 11624403
    Abstract: The invention relates to a method for producing a rolling bearing ring featuring an improved robustness against the formation of white etching cracks (WEC), wherein the rolling bearing component, which is made of a hypo-eutectoid heat-treated steel containing C in an amount of 0.4-0.55% and Cr in an amount of 0.5-2.0% in order to form a hardened boundary layer, is inductively heated, then quenched and subsequently tempered.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: April 11, 2023
    Assignee: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Lothar Hofmann, Andreas Mangold, Toni Blass, Wolfram Kruhoeffer, Werner Trojahn
  • Patent number: 11603579
    Abstract: The present invention concerns a slag composition having a high lithium content, suitable as additive in the manufacture of end-user products, or for the economic recovery of the contained lithium. The lithium concentration indeed compares favorably with that of spodumene, the classic mineral mined for lithium production. This slag is characterized by a composition according to: 3%<Li2O<20%; 1%<MnO<7%; 38%<Al2O3<65%; CaO<55%; and, SiO2<45%.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: March 14, 2023
    Assignee: UMICORE
    Inventors: Maarten Quix, David Van Horebeek, Thomas Suetens
  • Patent number: 11597009
    Abstract: Provided are an alloy powder having excellent environmental resistance even in an environment where corrosion and wear are active simultaneously, and an alloy coating using the powder. A Ni—Fe base alloy powder comprising Cr of 15% by mass or more and 35% by mass or less, Fe of 10% by mass or more and 50% by mass or less, Mo of 0% by mass or more and 5% by mass or less, Si of 0.3% by mass or more and 2% by mass or less, C of 0.3% by mass or more and 0.9% by mass or less, B of 4% by mass or more and 7% by mass or less, and a balance of Ni and incidental impurities.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 7, 2023
    Assignees: Ebara Corporation, Ebara Environmental Plant Co., Ltd., Dai-Ichi High Frequency Co., Ltd.
    Inventors: Manabu Noguchi, Eiji Ishikawa, Eichi Tanaka, Shigenari Hayashi, Takashi Kogin, Nobuhiro Takasaki, Kenichiro Okutsu, Masaya Kanazawa, Yasuki Miyakoshi, Hidenori Takahashi, Suzue Yoneda, Takayuki Saitou