Patents Examined by Brian D Walck
  • Patent number: 11781200
    Abstract: A plated steel including a plated layer on a surface of a steel, in which Expression 1 of 0?Cr+Ti+Ni+Co+V+Nb+Cu+Mn?0.25 and Expression 2 of 0?Sr+Sb+Pb+B+Li+Zr+Mo+W+Ag+P?0.50 are satisfied, and Expression 3 of I(MgZn2 (41.31°))/I?(MgZn2)?0.265 and Expression 6 of 0.150?{I(MgZn2 (20.79°))+I(MgZn2 (42.24°))}/I?(MgZn2) are further satisfied in an X-ray diffraction pattern of a surface of the plated layer measured using Cu-K? rays under a condition that an X-ray output is 40 kV and 150 mA.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: October 10, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kohei Tokuda, Takuya Mitsunobu, Mamoru Saito, Yuto Fukuda, Yasuto Goto, Hidetoshi Shindo, Fumiaki Nakamura, Koji Kawanishi, Ryohei Mimura
  • Patent number: 11781604
    Abstract: An actuator includes a first ball-ramp plate, a second ball-ramp plate, and a plurality of balls. The first ball-ramp plate is formed of compressed powdered metal with ramps having a higher density than at least part of a remainder of the ball-ramp component. A method of manufacturing the actuator includes compacting a metal powder to form a blank of the first ball-ramp plate including an annular body disposed about an axis and a plurality of ramps fixedly coupled to the annular body and spaced circumferentially about the axis, and locally densifying the ramps of the blank by applying force to a ramped surface of each ramp.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: October 10, 2023
    Assignee: American Axle & Manufacturing, Inc.
    Inventors: Satyanarayanan Raghavan, Daniel R. Bankovic
  • Patent number: 11781208
    Abstract: The invention relates to a dispersion-hardened platinum composition comprising at least 70 wt. % platinum, the platinum composition containing up to 29.95 wt. % of one of the metals rhodium, gold, iridium and palladium, between 0.05 wt. % and 1 wt. % oxides of the non-precious metals zirconium, yttrium and scandium, and, as the remainder, the platinum including impurities, wherein between 7.0 mol. % and 11.0 mol. % of the oxides of the non-precious metals is yttrium oxide, between 0.1 mol. % and 5.0 mol. % of the oxides is scandium oxide, and the remainder of the oxides is zirconia, including oxide impurities. The invention also relates to a crucible for crystal growing, a semi-finished product, a tool, a tube, a stirrer, a fiberglass nozzle or a component for producing or processing glass made of a platinum composition of this kind and to a method for the production of a platinum composition.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: October 10, 2023
    Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KG
    Inventor: Matthias Wegner
  • Patent number: 11773467
    Abstract: Provided are a method and a system for processing a rare earth concentrate ore. The method comprises (1) mixing the rare earth concentrate ore and concentrated sulfuric acid, thereby obtaining a mixed slurry and a first fluorine-containing gas; (2) mixing the mixed slurry and an initiator liquid for acidolysis, thereby obtaining a clinker and a second fluorine-containing gas; (3) subjecting the clinker to leaching with water, thereby obtaining a leached slurry; (4) subjecting the leached slurry to a solid-liquid separation, thereby obtaining a filtrate and a leached slag, and recycling the leached slag to step (2) for acidolysis again.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: October 3, 2023
    Assignee: CHINA ENFI ENGINEERING CORPORATION
    Inventors: Jianwen Tang, Guoshan Du, Pengfei Xian, Shuang Qiu, Wenlong Zhou, Bo Qin
  • Patent number: 11773473
    Abstract: Provided is an Ir alloy which is excellent in high temperature strength while ensuring oxidation wear resistance at high temperature. The Ir alloy consists of: 7 mass % or more, and less than 10 mass % of Rh; 0.5 mass % to 5 mass % of Ta; 0 mass % to 5 mass % of at least one kind of element selected from among Co, Cr, and Ni; and Ir as the balance, wherein a total content of the Ta and the at least one kind of element selected from among Co, Cr, and Ni is 5 mass % or less.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: October 3, 2023
    Assignees: ISHIFUKU METAL INDUSTRY CO., LTD., DENSO CORPORATION
    Inventors: Shunsuke Yokota, Yoshinori Doi, Ryohei Akiyoshi, Ken Hanashi
  • Patent number: 11772161
    Abstract: Methods and apparatuses for in situ synthesis of SiC, CMCs, and MMCs are disclosed, comprising: providing an apparatus having: an electromagnetic energy source; an autofocusing scanner; a powder system for SiC and one or more powders; a powder delivery system; a shielding gas comprising argon and/or nitrogen; and a computer coupled to and configured to control the energy source, scanner, powder system, and powder delivery system to deposit layers of the sample; programming the computer with specifications of the sample; using the computer to control electromagnetic radiation, mixing ratio, and powder deposition parameters based on the specifications of the sample; and using the autofocusing scanner to focus and scan the electromagnetic radiation onto the sample while the powders are concurrently deposited by the powder delivery system onto the sample to create a melting pool to deposit one or more layers onto the sample. Other embodiments are described and claimed.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: October 3, 2023
    Assignee: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Patent number: 11767576
    Abstract: A disclosed dilute copper metal composition has 57-85% wt Cu, ?3.0% wt Ni, ?0.8% wt Fe, 7-25% wt Sn and 3-15% wt Pb. A process includes partially b) oxidizing a black copper composition to obtain a first copper refining slag and a first enriched copper metal. The process further includes oxidizing h) the first enriched copper metal to obtain a second copper refining slag, whereby at least 37.0% wt of the amount of tin and lead processed through steps b) and/or h) is retrieved in the first and second copper refining slags together, partially reducing c) the first copper refining slag to form a first lead-tin based metal composition and a first spent slag, adding the second copper refining slag to the first lead-tin based metal composition thereby forming a first liquid bath, partially oxidizing d) the first liquid bath, thereby obtaining the dilute copper metal composition.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 26, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11767605
    Abstract: A preparation method of gradient high-silicon steel by molten salt electrolysis includes: weighing the inorganic fluoride salt and the inorganic silicon salt, mixing them uniformly and then drying; heating the electrolysis container over the melting point of the electrolyte, passing the inert gas through the electrolysis container, and connecting the electrode to the power supply to perform constant current electrolysis, after the electrolysis is finished, the cathode is taken out, washed and dried, placing the dried cathode in a constant temperature region of an annealing furnace; under a protective gas atmosphere, heating the cathode to the target temperature, and maintaining the temperature for a period of time; after the heat treatment, cooling the cathode to the room temperature, during which the cathode is always placed in the furnace.
    Type: Grant
    Filed: June 8, 2023
    Date of Patent: September 26, 2023
    Inventors: Zhe Wang, Shuqiang Jiao, Zheng Huang, Xinrui Wang
  • Patent number: 11761067
    Abstract: Provided herein are techniques for making low-carbon steels with high surface hardness. A technique includes heating a low-carbon steel precursor material in a furnace to form molten steel material, increasing the free oxygen content of the molten steel material to a predetermined level, and then solidifying the molten steel material having the predetermined oxygen level to produce a steel structure by cooling the molten steel material at a predetermined cooling rate. The predetermined oxygen level and the predetermined cooling rate are effective to produce the low-carbon steel with a high surface hardness. The low-carbon steel may have inclusions smaller than about 1 ?m.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: September 19, 2023
    Assignee: THE FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Huigai Li, Ke Han, Yan Xin, Shaobo Zheng, Liuxing Wang, Qijie Zhai
  • Patent number: 11760689
    Abstract: Beads of materials such as activated alumina, zeolite and silica gel, are used as chloride salt absorbers. The beads are mixed with high-salt gypsum. After mixing for a short time, the mixtures are dried, and the beads and the powder are separated by using a sieve or other physical separation device resulting in a low-salt gypsum which can be used as a gypsum source to make gypsum wallboard.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: September 19, 2023
    Assignee: KNAUF GIPS KG
    Inventors: Qinghua Li, Ashish Dubey, Mark Hemphill
  • Patent number: 11761066
    Abstract: A novel medium entropy alloy having the chemical formula MoxCrNiCo (atomic %) where (x ranges from ˜0.4 to ˜1.0).
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 19, 2023
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Yong Yang, Shuo Shuang, Dukhyun Chung
  • Patent number: 11753696
    Abstract: A method for controlling deformation of a large-scale crankshaft comprising detecting and recording stress value(s) of part(s) to be regulated by the crankshaft; fixing the crankshaft on a tool to couple transmitting ends of high-energy acoustic beam transducers with the part(s) to be regulated; turning on the high-energy acoustic beam transducers to emit high-energy acoustic beams into the crankshaft, controlling working frequencies of the high-energy acoustic beam transducers within a range of 10-30 kHz, and setting a predicted regulation and control time according to the stress value(s) of the part(s) to be regulated; and closing the high-energy acoustic beam transducers when the predicted regulation and control time is reached, and taking the crankshaft out of the tool.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: September 12, 2023
    Assignee: BEIJING INSTITUTE OF TECHNOLOGY
    Inventors: Chunguang Xu, Yuren Lu, Peng Yin, Peilu Li, Dezhi Li, Shuangyi Li, Wenyuan Song, Zhaowei Miao
  • Patent number: 11753707
    Abstract: Provided is a method for preparing an amorphous strip master alloy. The method includes: providing an amorphous alloy and cementite Fe3C; and placing the amorphous alloy and the cementite Fe3C in a smelting furnace for smelting treatment to obtain the amorphous strip master alloy, wherein elements constituting the amorphous alloy include Fe element, Si element and B element. An amorphous strip master alloy prepared by the preparation method is also provided.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: September 12, 2023
    Inventors: Jingran Wang, Jiahao Wang, Jiahui Wang
  • Patent number: 11753709
    Abstract: Provided are a hot-dipped galvanized steel material and a method for manufacturing the same. The hot-dipped galvanized steel material comprises an iron substrate and a hot-dipped galvanizing layer formed on the iron substrate, wherein the hot-dipped galvanizing layer comprises, by wt %, 0.01 to 0.5% of Al, 0.01 to 1.5% of Mg, 0.05 to 1.5% of Mn, 0.1 to 6% of Fe, and the balance of Zn and inevitable impurities, with a Zn—Fe—Mn based alloy phase present at the interface between the iron substrate and the hot-dipped galvanizing layer, and an area ratio of the Zn—Fe—Mn-based alloy phase to the hot-dipped galvanizing layer ranging from 1 to 60%.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 12, 2023
    Assignee: POSCO CO., LTD
    Inventors: Suk-Kyu Lee, Sang-Heon Kim, Kwang-Tai Min, Yon-Kyun Song
  • Patent number: 11746396
    Abstract: An aluminium based alloy, and a method for production of components by additive manufacturing (AM) or other rapid solidification process with the alloy, is based on the alloy having a composition with from 2.01 wt % to 15.0 wt % manganese, from 0.3 wt % to 2.0 wt % scandium, with a balance apart from minor alloy elements and incidental impurities of aluminium.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 5, 2023
    Assignee: MONASH UNIVERSITY
    Inventors: Paul Rometsch, Xinhua Wu, Qingbo Jia
  • Patent number: 11746395
    Abstract: A process for the production of a crude solder composition includes the provision of a first solder refining slag that includes tin and/or lead. The process further includes the steps of partially reducing the first solder refining slag, thereby forming a crude solder metal composition and a second solder refining slag, followed by separating the second solder refining slag from the crude solder metal composition, and partially reducing the second solder refining slag, thereby forming a second lead-tin based metal composition and a second spent slag followed by separating the second spent slag from the second lead-tin based metal composition A copper containing fresh feed is added to step (ii), preferably before reducing the second solder refining slag.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 5, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11739394
    Abstract: A process for a producing crude solder product and a copper product includes the steps of providing a black copper comprising >=50% wt of copper together with >=1.0% wt of tin and/or >=1.0% wt of lead, and refining a first portion of the black copper to obtain a refined copper product together with at least one copper refining slag. The process further includes the steps of recovering a first crude solder product from the copper refining slag, thereby forming a solder refining slag in equilibrium with the first crude solder product, and contacting a different portion of the black copper with the solder refining slag thereby forming a spent slag and a lead-tin based metal, followed by separating the spent slag from the lead-tin based metal.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 29, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11739401
    Abstract: Provided is a black heart malleable cast iron and a method for manufacturing the same which can significantly shorten the time required for graphitization, as compared with the prior art. The black heart malleable cast iron includes a matrix of ferrite and lump graphite included in the matrix, and includes at least one selected from the group consisting of (i) 0.0050% by mass or more and 0.15% by mass or less of bismuth and 0.020% by mass or more of manganese, and (ii) 0.0050% by mass or more and 1.0% by mass or less of aluminum and 0.0050% by mass or more of nitrogen. In addition, the grain size of the matrix is 8.0 or more and 10.0 or less in terms of grain size number, numerically determined by comparison between a metallographic photograph of the matrix and a standard grain size chart.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 29, 2023
    Assignee: Proterial, Ltd.
    Inventors: Ryo Goto, Takayuki Fukaya, Hiroshi Matsui, Kenta Matsuura
  • Patent number: 11739400
    Abstract: A magnesium alloy of the present invention has a structure, comprising: 0.5-2.0 wt % of Zn; 0.3-0.8 wt % of Ca; at least 0.2 wt % of Zr; and the remainder comprising Mg and unavoidable impurities, wherein a nanometer-sized precipitate comprising Mg, Ca and Zn dispersed on the (0001) plane of a magnesium matrix, thereby achieving both formability and strength in a range of temperatures including room temperature.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 29, 2023
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ming-Zhe Bian, Taisuke Sasaki, Kazuhiro Hono, Shigeharu Kamado, Taiki Nakata
  • Patent number: 11739405
    Abstract: A method of producing an Al—Mg—Si-based aluminum alloy forged product, includes a solution heat treatment step of performing a solution heat treatment for heating the forged product obtained in the forging step at a temperature rising rate of 5.0° C./min or more from 20° C. to 500° C. and holding the forged product at 530° C. to 560° C. for 0.3 hours to 3 hours, a quench treatment step of quenching the forged product in a water tank by bringing an entire surface of the forged product into contact with quenching water within 5 seconds to 60 seconds after the solution heat treatment step for more than 5 minutes and not more than 40 minutes, and an aging treatment step of performing an aging treatment by heating the forged product after the quench treatment step at a temperature of 180° C. to 220° C. for 0.5 hours to 1.5 hours.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: August 29, 2023
    Assignee: SHOWA DENKO K.K.
    Inventor: Takuya Arayama