Patents Examined by Brian Walck
  • Patent number: 8894779
    Abstract: Provided is bearing steel excellent in post spheroidizing-annealing workability and in post quenching-tempering hydrogen fatigue resistance property. The bearing steel has a chemical composition containing, by mass %: 0.85% to 1.10% C; 0.30% to 0.80% Si; 0.90% to 2.00% Mn; 0.025% or less P; 0.02% or less S; 0.05% or less Al; 1.8% to 2.5% Cr; 0.15% to 0.4% Mo; 0.0080% or less N; 0.0020% or less O; and the balance being Fe and incidental impurities, to thereby effectively suppress the generation of WEA even in environment where hydrogen penetrates into the steel, so as to improve the rolling contact fatigue life and also the workability such as cuttability and forgeability of the material.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: November 25, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yasumasa Hirai, Kiyoshi Uwai
  • Patent number: 8888934
    Abstract: In a method to produce formed steel parts a primary steel material is provided, which (in % by weight) comprises C: 0.02-0.6%, Mn: 0.5-2.0%, Al: 0.01-0.06%, Si: max. 0.4%, Cr: max. 1.2%, P: max. 0.035%, S: max. 0.035%, and optionally one or more of the elements of the “Ti, Cu, B, Mo, Ni, N” group, with the proviso that Ti: max. 0.05%, Cu: max. 0.01%, B: 0.0008-0.005%, Mo: max. 0.3%, Ni: max. 0.4%, N: max. 0.01%, and the remainder as iron and unavoidable impurities. The primary material is heated through at a heating temperature (TA) lying between the Ac1 and the Ac3 temperature, such that at best incomplete austenitising of the primary material takes place, is placed into a press-form tool and formed therein into the formed steel part. The formed steel part is then heated to a bainite forming temperature (TB), which is above the martensite starting temperature (MS), however below the pearlite transformation temperature of the steel.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: November 18, 2014
    Assignee: ThyssenKrupp Steel Europe AG
    Inventor: Jian Bian
  • Patent number: 8876996
    Abstract: The invention relates to a method for the manufacture of double-sided metallized ceramic substrates according to the direct-bonding process. The method enables a ceramic substrate to be bonded to a metal plate or foil on the upper side and the underside in only one process sequence. The composite to be bonded is located on a specially designed carrier structured on the upper side with a plurality of contact points. After the bonding process the composite of metal plates and ceramic substrate can be detached from the carrier free of any residue.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: November 4, 2014
    Assignee: IXYS Semiconductor GmbH
    Inventors: Werner Weidenauer, Thomas Spann, Heiko Knoll
  • Patent number: 8858737
    Abstract: An aluminum-based sliding alloy containing 1 to 15 mass % of Si is provided. Si precipitates in the form of particles in an observation field of the aluminum-based sliding alloy. The Si particles have a maximum diameter of 0.01 to 7.5 ?m and the total area of Si particles having a diameter of not more than 5.5 ?m accounts for not less than 95% of the total area of the Si particles present in the aluminum-based sliding alloy.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: October 14, 2014
    Assignee: Daido Metal Company Ltd.
    Inventors: Kouichi Saruwatari, Yukihiko Kagohara, Tomoyuki Nirasawa
  • Patent number: 8845831
    Abstract: There is provided a heat treatment method in which high-quality tempering treatment can be performed in a short period of time. In this method, when an object to be treated is tempered after being quenched, the object to be treated is rapidly cooled to a 90% martensite transformation finishing temperature without being cooled to the ordinary temperature after quench heating, and then is subjected to 100% martensite transformation by using a 100° C. liquid, and thereafter, tempering treatment is performed after the whole of the object to be treated is soaked by using the 100° C. liquid.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 30, 2014
    Assignee: Denki Kogyo Co., Ltd.
    Inventors: Seiichi Sawatsubashi, Keiichi Kubo
  • Patent number: 8840737
    Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The instantly disclosed alloys are useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: September 23, 2014
    Assignee: Alcoa Inc.
    Inventors: Gary H. Bray, Dhruba J. Chakrabarti, Diana K. Denzer, Jen C. Lin, John Newman, Gregory B. Venema, Cagatay Yanar, Julien Boselli
  • Patent number: 8828160
    Abstract: Method for producing a forging from a gamma titanium aluminum-based alloy. The method includes heating at least a portion of a cylindrical or rod-shaped starting or raw material to a temperature of more than 1150° C. over a cross section of the at least a portion. The at least a portion corresponds to points at which the forging to be shaped has volume concentrations. The method also includes deforming the at least a portion through an applied force to form a biscuit having different cross sectional areas over a longitudinal extension of the biscuit, and finishing the forging through a second heating to a deformation temperature and at least one subsequent step.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: September 9, 2014
    Assignee: Boehler Schmiedetechnik GmbH & Co. KG.
    Inventors: Sascha Kremmer, Heinz Romen-Kierner, Wilfried Wallgram
  • Patent number: 8828156
    Abstract: An aluminum sheet material for lithographic printing plates wherein the number of aluminum carbide particles having a circle equivalent diameter, measured by the PoDFA method, of 3 ?m or more is four or less, the number of aluminum carbide particles having a circle equivalent diameter, measured by the PoDFA method, of 3 ?m or more.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 9, 2014
    Assignees: Fujifilm Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Shinya Kurokawa, Hirokazu Sawada, Akio Uesugi, Masanori Tsunekawa, Kazuaki Hatano, Hiroshi Ougi, Koushi Nagae
  • Patent number: 8815020
    Abstract: A method of manufacturing a laminar ring, which permits an improvement of efficiency of a nitriding treatment of a plurality of metallic band members which constitute the laminar ring is provided.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koji Nishida, Yuji Suzuki
  • Patent number: 8795449
    Abstract: The present invention relates to a Fe—Ga—Al-based magnetostrictive thin-sheet material and a process for preparation thereof. The raw materials used for production of the thin-sheet material is composed of the components according to the general Formula, Fe100-x-y-zGaxAlyMz, wherein x=10-30, y=1-10, and z=0.1-5, and M is any one, or more elements selected from V, Cr, Zr, Sb, Sn, Ti, SiC.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: August 5, 2014
    Assignee: Beijing Magoriental Materials Technology Co., Ltd.
    Inventors: Xuexu Gao, Jiheng Li, Maocai Zhang, Jie Zhu, Lina Dong
  • Patent number: 8784582
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, erosion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: July 22, 2014
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Patent number: 8778099
    Abstract: A method for producing high strength aluminum alloy containing L12 intermetallic dispersoids by using gas atomization to produce powder that is then consolidated into L12 aluminum alloy billets or by casting the alloy into molds to produce L12 aluminum alloy billets or by casting the alloy into directly useable parts.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 15, 2014
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8668760
    Abstract: A method for the production of a ?-TiAl base alloy by vacuum arc remelting, which ?-TiAl base alloy solidifies via the ?-phase (?-?-TiAl base alloy), includes the following method steps of forming a basic melting electrode by melting, in at least one vacuum arc remelting step, of a conventional ?-TiAl primary alloy containing a lack of titanium and/or of at least one ?-stabilizing element compared to the ?-?-TiAl base alloy to be produced; allocating an amount of titanium and/or ?-stabilizing element to the basic melting electrode, which amount corresponds to the reduced amount of titanium and/or ?-stabilizing element, in an even distribution across the length and periphery of the basic melting electrode; and adding the allocated amount of titanium and/or ?-stabilizing element to the basic melting electrode so as to form the homogeneous ?-?-TiAl base alloy in a final vacuum arc remelting step.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: March 11, 2014
    Assignees: GfE Metalle und Materialien GmbH, TiTAL GmbH
    Inventors: Dipl.-Ing Matthias Achtermann, Willy Fürwitt, Volker Güther, Dipl.-Mineraloge Hans-Peter Nicolai
  • Patent number: 8663405
    Abstract: A method for enhancing the formability of press-formed high strength, age-hardenable aluminum alloy sheet is disclosed. The sheet is partially formed when in an overaged condition, for example in a T7 or T8 temper condition, to form a preform. After an annealing and solutionizing process the preform is promptly further deformed in a second forming operation and subsequently aged to develop high strength. The method may be employed to form components of more complex shape from higher strength aluminum alloys such as 6000 series and 7000 series alloys.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: March 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Paul E. Krajewski
  • Patent number: 8663403
    Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. In one embodiment, the aged microstructure includes martensite and not more than about 10% reverted austenite. In another embodiment, the alloy includes substantially all martensite and substantially no reverted austenite. The alloy is useful for making turbine airfoils.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: March 4, 2014
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
  • Patent number: 8652396
    Abstract: A method continuously creates a bainite structure in a carbon steel, especially a strip steel by austenitizing the carbon steel; introducing the austenitized carbon steel into a bath containing a quenching agent; adjusting the carbon steel to the transformation temperature for bainite and maintaining the transformation temperature for a certain period of time; and then cooling the carbon steel. The carbon steel stays in the bath until a defined percentage of the bainite structure relative to the total structure of the carbon steel has formed. Residues of the quenching agent are removed from the surface of the carbon steel by blowing the same off when the carbon steel is discharged from the bath, and the remaining structure components of the carbon steel are then transformed into bainite in an isothermal tempering station without deflecting the carbon steel at all.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: February 18, 2014
    Assignees: C.D. Wälzholz GmbH, Ebner Industrieofenbau GmbH
    Inventors: Werner Kaiser, Heinz Hoefinghoff, Hans-Toni Junius, Michael Hellmann, Peter Ebner, Heribert Lochner
  • Patent number: 8652275
    Abstract: A process for melt dip coating a strip of high-tensile steel with alloy constituents including zinc and/or aluminum includes the following steps. The strip is heated in a continuous furnace initially in a reductive atmosphere to a temperature of approximately 650° C., at which the alloy constituents diffuse to the surface in small amounts. The surface, consisting predominantly of pure iron, is converted into an iron oxide layer by a short heat treatment at a temperature of up to 750° C. in a reaction chamber which is integrated in a continuous furnace and has an oxidizing atmosphere. In a subsequent annealing treatment at a higher temperature in a reductive atmosphere, this iron oxide layer prevents the alloy constituents from diffusing to the surface. In the reductive atmosphere, the iron oxide layer is converted into a pure iron layer to which the zinc and/or aluminum are applied in the molten bath with optimum adhesion.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: February 18, 2014
    Assignee: ThyssenKrupp Steel AG
    Inventors: Ronny Leuschner, Manfred Meurer, Wilhelm Warnecke, Sabine Zeizinger, Gernot Nothacker, Michael Ullmann, Norbert Schaffrath
  • Patent number: 8636856
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 28, 2014
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Patent number: 8636959
    Abstract: The present invention is an exhaust gas purification catalyst equipment, and a method of use thereof, formed by arranging a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst, characterized in that said catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i) but the component (iii), in a flow path of exhaust gas, characterized in that a spraying means to supply an urea aqueous solution or an aqueous
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: January 28, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Patent number: 8636859
    Abstract: Method for austempering at least one part of a work piece, which method comprises the steps of: a) heating at least one part of the work piece to an initial austenitizing temperature (T1); b) subjecting said at least one part of the work piece to one or more austenitizing temperatures (T1 . . . T1n) for a predetermined time to austenitize it; c) quenching said at least one part of the work piece; d) heat treating said at least one part of the work piece at one or more austempering temperatures (T2 . . . T2n) for a predetermined time to austemper it; e) cooling the at least one part of the work piece; whereby at least one of the steps a) to e) is/are at least partly carried out under Hot Isostatic Pressing (HIP) conditions.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: January 28, 2014
    Assignee: Indexator Group AB
    Inventor: Richard Larker