Patents Examined by Bruce Bell
  • Patent number: 8361289
    Abstract: An electrode comprising an electrically conducting diamond plate wherein the diamond plate comprises at least one elongate aperture and having an aperture edge length per unit working area of the diamond plate of greater than about 4 mm/mm2, electrolysis cells comprising such electrodes, methods of treating water using such electrolysis cells and a method of production of ozone are disclosed.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: January 29, 2013
    Inventors: Andrew John Whitehead, Christopher John Wort, Geoffrey Alan Scarsbrook, William Joseph Yost
  • Patent number: 8357271
    Abstract: The present invention aims to provide a zinc electrowinning anode capable of inhibiting manganese compound deposition on the anode and a cobalt electrowinning anode capable of inhibiting cobalt oxyhydroxide deposition on the anode. The zinc electrowinning anode according to the present invention is a zinc electrowinning anode having an amorphous iridium oxide-containing catalytic layer formed on a conductive substrate, and the zinc electrowinning method according to the present invention is an electrowinning method using that electrowinning anode. Also, the cobalt electrowinning anode according to the present invention is an electrowinning anode having an amorphous iridium oxide or ruthenium oxide-containing catalytic layer formed on a conductive substrate, and the cobalt electrowinning method according to the present invention is an electrowinning method using that electrowinning anode.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: January 22, 2013
    Assignee: The Doshisha
    Inventor: Masatsugu Morimitsu
  • Patent number: 8354011
    Abstract: An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A?yBO(3-?), wherein 0<x<1, 0?y?0.5, and 0.8?z?1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 15, 2013
    Assignee: Ceramatec, Inc.
    Inventors: S. Elangovan, Joseph J. Hartvigsen, Feng Zhao
  • Patent number: 8349163
    Abstract: According to one embodiment, an electroforming master comprises a patterns of protrusions and recesses formed on one major surface of an Si substrate having two major surfaces, corresponding to information for positioning of a read/write head (a preamble, address, and burst), recording tracks or recording bits. Impurity ions are doped in the surface of this patterns of protrusions and recesses. The impurity ion concentration distribution in the film thickness direction of the Si substrate has a peak in a portion from the patterns of protrusions and recesses surface to a depth of 40 nm in the film thickness direction. The impurity concentration of this peak is 1×1020 to 2×1021 ions/cm3.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Shirotori, Akira Watanabe, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 8349148
    Abstract: An electrolytic mortar for fabricating galvanic anode panels is strengthened with fibers to improve green strength and resistance to cracking. Elongated reinforcing fibers are introduced into a flowing stream of mortar and deposited in multiple layers upon a platen or mold. A sacrificial zinc anode of open construction is embedded between the multiple layers to allow for electrolytic conduction between the layers and over all surfaces of the zinc anode.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 8, 2013
    Assignee: Jarden Zinc Products, LLC
    Inventors: Derek Tarrant, Michael T. Mather
  • Patent number: 8349166
    Abstract: A single anode system used in multiple electrochemical treatments to control steel corrosion in concrete. The anode system comprises a sacrificial metal that is capable of supporting high impressed anode current densities with an impressed current anode connection detail and a porous embedding material containing an electrolyte. Initially current is driven from the sacrificial metal (1) to the steel (10) using a power source (5) for converting oxygen and water (14) into hydroxyl ions (15) on the steel and drawing chloride ions (16) into the porous material (2) around the anode such that corroding sites are moved from the steel to the anode restoring steel passivity and activating the anode. Cathodic prevention is then applied. This is preferably a sacrificial cathodic prevention which is applied by disconnecting the power source and connecting the activated sacrificial node directly to the steel.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 8, 2013
    Inventors: Gareth Glass, Adrian Roberts, Nigel Davison
  • Patent number: 8349154
    Abstract: The invention relates to modified electrodes for ER fluids prepared by adding a rough, wear-resisting, and low conductive modified layer on the surface of metallic electrodes. The material for the modified layer can be at least one from diamond, alumina, titanium dioxide, carborundum, titanium nitride, nylon, polytetrafluoroethylene, adhesive, and adhesive film. Through the addition of the modified layer, the adhesion of the ER fluid to electrodes is increased so that the shear stress measured near the plates is close to the intrinsic value, which makes the ER fluid applicable, while reducing the leakage current and increasing the breakdown voltage of the ER fluid equipment.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Kunquan Lu, Rong Shen, Xuezhao Wang
  • Patent number: 8343321
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 1, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Patent number: 8343668
    Abstract: A porous tin particle and its preparation method are provided in the present invention. The method includes steps of: (a) performing a reductive (or reductive electrochemical) reaction on a tin particle which simultaneously reacts with lithium ions to form a tin-lithium (Sn—Li) alloy; and (b) performing an oxidative (or oxidative electrochemical) reaction on Sn—Li alloy to release the lithium ions therefrom, and the porous tin particle is formed. The porous tin particle could be further applied in manufacturing the electrochemical electrode for lithium-ion battery with longer cycle life and higher reversibility.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: January 1, 2013
    Assignee: National Taiwan University
    Inventors: Nae-Lih Wu, Sung-Chieh Chao
  • Patent number: 8337680
    Abstract: The present invention is to provide a substrate holder which can effect a more complete sealing with a sealing member and makes it possible to take a substrate out of the substrate holder easily and securely, and also a plating apparatus provided with the substrate holder. The substrate holder includes: a fixed holding member and a movable holding member for holding a substrate therebetween; a sealing member mounted to the fixed holding member or the movable holding member; and a suction pad for attracting a back surface of the substrate held between the fixed holding member and the movable holding member.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 25, 2012
    Assignee: Ebara Corporation
    Inventors: Junichiro Yoshioka, Kuniaki Horie, Yugang Guo, Satoshi Morikami
  • Patent number: 8338323
    Abstract: The present invention provides a process for producing an electrode for electrochemical reaction, wherein a conductive diamond layer is formed on an electrode substrate in the electrode; and the electrode substrate on which the conductive diamond layer is formed is kept at a temperature of 400° C. or more and 1,000° C. or less in a water vapor, thereby forming a micropore in the conductive diamond layer. Also, the present invention provides an electrode for electrochemical reaction obtained by the foregoing production process.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 25, 2012
    Assignees: Permelec Electrode Ltd., Shinshu University
    Inventors: Yoshio Takasu, Wataru Sugimoto, Tatsuya Ohashi, Junfeng Zhang
  • Patent number: 8337677
    Abstract: The installation and use of embedded sacrificial anodes to protect reinforced concrete may be improved. In one example a cavity [2] is formed in the concrete [3] and a puttylike backfill [4] is placed in the cavity and a compact discrete anode comprising a sacrificial metal element [1] is inserted into the backfill and a space is provided into which the backfill may move when subjected to a pressure arising from the formation of voluminous sacrificial meal corrosion products and a high current is passed from the anode to the steel in the concrete to arrest steel corrosion and activate the anode in the backfill. The space may be provided by venting the backfill to space outside the cavity through an opening [5] or by including a void space within the backfill [6] or a void space within the cavity [7].
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: December 25, 2012
    Inventors: Gareth Glass, Nigel Davison, Adrian Roberts
  • Patent number: 8333877
    Abstract: Disclosed is a method to manufacture an electrode. The metal oxide of different sizes (or metal oxide secondary particle of similar size) is formed on a transparent substrate by electrophoresis deposition. Subsequently, the metal oxide layer is compressed and dipped in dye to complete an electrode applied in a solar cell. Furthermore, the step of dipping the metal oxide in dye can be earlier than the electrophoresis deposition, thereby reducing the dipping period and dipping temperature.
    Type: Grant
    Filed: May 29, 2010
    Date of Patent: December 18, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Mu Lee, Yung-Liang Tung
  • Patent number: 8333878
    Abstract: This invention teaches a method of coating a vehicle wheel to increase wear resistance which, in its preferred embodiment, includes the steps of providing a vehicle wheel and applying a wear resistant coating between/intermediate a primer and a topcoat. The wear resistant coating is applied to at least the tire bead flange of the vehicle wheel but may be applied to any area of the wheel. It is advantageously comprised of a MIL-P-53022B Type II lead and chromate free, corrosion inhibiting epoxy primer with an addition of 3% polytetrafluoroethylene (PTFE), and is formulated in such a manner so as to allow “wet on wet” application over a cured MIL-P-53084 primer. This application method improves adhesion through surface to surface covalent reaction between the polymerization of polyurethane top coat and the polymerization of intermediate epoxy polyamide wear resistant coating.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: December 18, 2012
    Assignee: Hutchinson, SA
    Inventors: Pascal Seradarian, Larry K. Rogers, Dawn M. DiMarco, Robert D. Holmers
  • Patent number: 8329004
    Abstract: An apparatus for protection of metallic materials from corrosion comprising an electrical power source (5) and a conductor (7) coupled to the power source. An anode (11) is electrically coupled to the conductor. The anode is configured to be secured proximal to the metallic materials to be protected from corrosion and has an exterior surface (13) formed predominantly of electrically conductive polymer and an interior filled with particulate carbonaceous material. The anode comprises a hollow cylinder (13) formed of electrically conductive polymer, the cylinder having an interior. A metallic tube (15) is secured to and in electrical communication with the interior of the cylinder. An anode conductor (17) is electrically coupled to the metallic tube and extends from the interior of the cylinder to the exterior of the cylinder for connection to the conductor coupled to the power source.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 11, 2012
    Assignee: AEP & T, LLC
    Inventor: Michael Steven Georgia
  • Patent number: 8329008
    Abstract: A gas generating device of present invention is generated a first gas at a first carbon electrode by applying a voltage between said first carbon electrode and a second electrode to electrolyzing an electrolytic solution. The first carbon electrode is an anode or a cathode. The first carbon electrode is provided with a plurality of fine gas flow channels which selectively pass said first gas generated on one surface of said first carbon electrode to the other surface without allowing said electrolytic solution to permeate therethrough.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hiroshi Maekawa, Mitsuru Sadamoto, Souta Itou, Takahiro Maeda, Kentaro Suzuki, Tetsuya Watanabe
  • Patent number: 8329014
    Abstract: Disclosed is a method for producing a vehicle body, which, without removing protrusions on an electrophoretic coating, improves the coating quality. The outer surface of the vehicle body is sanded prior to a pre-treatment, where the vehicle body is degreased and washed.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: December 11, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaki Takahashi, Yasuhiro Kume
  • Patent number: 8329003
    Abstract: A system for detecting and preventing galvanic corrosion of an anodic metal includes a potential detector configured to monitor an electrical potential within the electrolyte solution, a signal amplifier coupled with the potential detector, and a current delivery circuit coupled with the signal amplifier. The signal amplifier is configured to provide an output proportional to the monitored electrical potential, and the current delivery circuit is configured to provide a current to a cathodic metal that is proportional to the output of the signal amplifier.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: December 11, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Guangling Song
  • Patent number: 8323463
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 4, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Gervase Maxwell Christie, Jamie Robyn Wilson, Bart Antonie van Hassel
  • Patent number: 8317987
    Abstract: One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: November 27, 2012
    Assignee: SunPower Corporation
    Inventors: Emmanuel Chua Abas, Chen-An Chen, Diana Xiaobing Ma, Kalyana Bhargava Ganti