Patents Examined by Bruce Bell
  • Patent number: 8226805
    Abstract: An insoluble anode for metal wire electroplating capable of simultaneously electroplating a plurality of metal wires and uniformalizing the electroplating amounts of the metal wires stably for a long time. For realizing these, a plurality of insoluble electrode plates are disposed in a parallel alignment to be placed sandwiching a plurality of wire travel paths from both sides. A plurality of the insoluble electrode plates are tightened and fixed by through-bolts at a plurality of places along the travel path direction. A conductive spacer is interposed in each gap between the insoluble electrode plates at a tightening part by the through-bolt and also a conductive member is provided so as to contact all the electrode plates and the conductive spacers.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 24, 2012
    Assignees: Daiso Co., Ltd., Bridgestone Corporation
    Inventors: Kenji Kawaguchi, Ryuichi Otogawa, Kenichi Murakami, Yuji Nakamura
  • Patent number: 8226812
    Abstract: A method in a corrosion protection system for protecting a first and a second metal part of a marine construction is provided. The method includes controlling electrical currents through electrical circuits, including respective anodes, the respective metal parts and an electrolyte, at least partly based on measured electrical potentials of the respective metal parts with an reference electrode as a ground reference. The method further includes repetitively performing the steps of controlling the electrical currents so as to be reduced or eliminated, measuring the electrical potentials while the electrical currents are maintained reduced or eliminated, and, after measuring the first and second electrical potentials, controlling the electrical currents so as to be increased or reestablished.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 24, 2012
    Assignee: AB Volvo Penta
    Inventors: Carl Nelvig, Lennart Arvidsson
  • Patent number: 8226806
    Abstract: The embodiments of the invention relate to an electrode for electrolysis comprising an electrode substrate and a coating of the electrode substrate with a polycrystalline diamond material, that the electrode substrate consists of a base body of carbon material and at least one contact layer of the electrode substrate carrying the coating consists of a non-metallic, electrically conductive material.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 24, 2012
    Assignee: Hoffmann & Co., Elektrokohle AG
    Inventors: Klaus Reiser, Conrad Reynvaan, Stefan Schneweis
  • Patent number: 8221610
    Abstract: An electrochemical method for providing hydrogen using ammonia, ethanol, or combinations thereof, comprising: forming an anode comprising a layered electrocatalyst, the layered electrocatalyst comprising at least one active metal layer deposited on a carbon support; providing a cathode comprising a conductor; disposing a basic electrolyte between the anode and the cathode; disposing a fuel within the basic electrolyte; and applying a current to the anode causing the oxidation of the fuel, forming hydrogen at the cathode.
    Type: Grant
    Filed: May 4, 2008
    Date of Patent: July 17, 2012
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8221601
    Abstract: One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 17, 2012
    Assignee: SunPower Corporation
    Inventors: Chen-An Chen, Emmanuel Chua Abas, Edmundo Anida Divino, Jake Randal G. Ermita, Jose Francisco S. Capulong, Arnold Villamor Castillo, Diana Xiaobing Ma
  • Patent number: 8221600
    Abstract: One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 17, 2012
    Assignee: SunPower Corporation
    Inventor: Kalyana Bhargava Ganti
  • Patent number: 8221599
    Abstract: Embodiments of the present disclosure include an anode, devices and systems including the anode (e.g., electrochemical devices and photo-electrochemical devices), methods of using the anode, methods of producing H2 and O2 from H2O, Cl2, oxidixed organic feedstocks, oxidation for the detection and quantification of chemical species, and the like.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 17, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher E. D. Chidsey, Paul C. McIntyre
  • Patent number: 8216437
    Abstract: An electrochemical cell for causing a reaction that produces hydrogen, the electrochemical cell comprising: a first electrode comprising: at least one layered electrocatalyst formed of at least one active metal layer deposited on a carbon support, wherein the at least one active metal layer is active to a target species; a second electrode comprising a conductor; a basic electrolyte; ammonia, ethanol, or combinations thereof; and electrical current in communication with the first electrode.
    Type: Grant
    Filed: May 4, 2008
    Date of Patent: July 10, 2012
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8216438
    Abstract: Provided is a copper anode or a phosphorous-containing copper anode for use in performing electroplating copper on a semiconductor wafer, wherein purity of the copper anode or the phosphorous-containing copper anode excluding phosphorous is 99.99 wt % or higher, and silicon as an impurity is 10 wtppm or less. Additionally provided is an electroplating copper method capable of effectively preventing the adhesion of particles on a plating object, particularly onto a semiconductor wafer during electroplating copper, a phosphorous-containing copper anode for use in such electroplating copper, and a semiconductor wafer comprising a copper layer with low particle adhesion formed by the foregoing copper electroplating.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 10, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akihiro Aiba, Hirofumi Takahashi
  • Patent number: 8216441
    Abstract: Embodiments of the invention provide a novel apparatus and methods for forming a contact structure having metal lines formed using an electrophoretic deposition process. A substrate having a conductive or semiconductive layer is covered with an insulating layer and patterned to expose the conductive or semiconductive layer. The substrate is exposed to a processing medium comprising charged particles immersed in a dielectric fluid. An electric field is optionally applied. The charged particles deposit onto the exposed portions of the substrate and are then solidified in a reflow process.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Manoocher Birang, Kapila P. Wijekoon, Alexander Sou-Kang Ko, Eugene Rabinovich
  • Patent number: 8216433
    Abstract: A plasma generator in which the variation of the impedance in the cavity before and after plasma is ignited is less and hardly affected by the shape of the cavity, and the ignitability of the plasma is improved and a method of generating plasma using the plasma generator are provided. The plasma generator comprises a nonconductive gas flow pipe (1) for introducing a gas (9) for generating plasma and discharging it into the atmosphere and a conductive antenna pipe (2) surrounding the gas flow pipe. A microwave (7) is applied to the antenna pipe to change the gas in the gas flow pipe into plasma. The plasma generator is characterized in that a slit (3) with a predetermined length is formed in the antenna pipe (2) along the axial direction of the gas flow pipe. Preferably, the plasma generator is characterized in that the length of the slit is an integral multiple of the half-wave length of the applied microwave.
    Type: Grant
    Filed: February 17, 2007
    Date of Patent: July 10, 2012
    Assignee: University of the Ryukyus
    Inventor: Akira Yonesu
  • Patent number: 8216956
    Abstract: A layered electrocatalyst for oxidizing ammonia, ethanol, or combinations thereof, comprising: a carbon support integrated with a conductive metal; at least one first metal plating layer at least partially deposited on the carbon support, wherein the at least one first metal plating layer is active to OH adsorption and inactive to a target species, and wherein the at least one first metal plating layer has a thickness ranging from 10 nanometers to 10 microns; and at least one second metal plating layer at least partially deposited on the at least one first metal plating layer, wherein the at least one second metal plating layer is active to the target species, and wherein the at least one second metal plating layer has a thickness ranging from 10 nanometers to 10 microns, forming a layered electrocatalyst.
    Type: Grant
    Filed: May 4, 2008
    Date of Patent: July 10, 2012
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8216439
    Abstract: The invention provides novel a hybrid slip casting-Electrophoretic Deposition (EPD) process which can be used to produce arbitrary shape geometries with controlled materials properties. The invention provides processes for the fabrication of Functionally Graded Materials (FGM) by a controlled Electrophoretic Deposition (EPD).
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: July 10, 2012
    Assignee: San Diego State University (SDSU) Foundation
    Inventors: Eugene Olevsky, Xuan Wang, Margaret Stern
  • Patent number: 8211278
    Abstract: Compositions for making wettable cathodes to be used in aluminum electrolysis cells are disclosed. The compositions generally include titanium diboride (TiB2) and metal additives. The amount of selected metal additives may result in production of electrodes having a tailored density and/or porosity. The electrodes may be durable and used in aluminum electrolysis cells.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Alcoa Inc.
    Inventors: Douglas A. Weirauch, Jr., Lance M. Sworts, Brian J. Tielsch, Robert A. DiMilia
  • Patent number: 8211289
    Abstract: A method of protecting steel in concrete is disclosed. A voltage between two connections of a power supply is generated such that current can flow between a negative connection and a positive connection. In a first protection step, one of the connections of the power supply is electrically connected to the steel to be cathodically protected and a sacrificial anode is electrically connected in series with the other connection of the power supply such that the voltage generated by the power supply is added to the voltage generated between the sacrificial anode and the steel to produce a voltage greater than the voltage generated between the sacrificial anode and the steel alone. The power supply may be a cell or battery and may be combined with the sacrificial anode to form a single unit.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 3, 2012
    Inventors: Gareth Kevin Glass, Adrian Charles Roberts, Nigel Davison
  • Patent number: 8206560
    Abstract: Disclosed is an aluminum electrolytic cell having profiled cathode carbon blocks structures, comprising a cell case, a refractory material installed on the bottom, an anodes and a cathode. The cathode carbon blocks include a profiled structure having projections on the top surface of the carbon blocks, that is, a plurality of projections are formed on a surface of the cathode carbon blocks. The aluminum electrolytic cell having the cathode structure according to the present invention can reduce the velocity of the flow and the fluctuation of the level of the cathodal molten aluminum within the electrolytic cell, so as to increase the stability of the surface of molten aluminum, reduce the molten lose of the aluminum, increase the current efficiency, reduce the inter electrode distance, and reduce the energy consumption of the production of aluminum by electrolysis.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 26, 2012
    Assignees: Northeastern University Engineering & Research Institute Co, Ltd., Northeastern University, Shenyang Beiye Metallurgical Technology Co., Ltd.
    Inventor: Naixiang Feng
  • Patent number: 8202406
    Abstract: A porous sheet which has good balance between electrolytic solution permeability and dry-up resistance, is superior in high-rate property, and is suitable for a separator for an electrochemical element, and a manufacturing method thereof are provided. The present invention relates to a porous sheet comprising a porous substrate containing non-fibrillar fibers having an average fiber diameter of 0.01-10 ?m and a net-like structural body composed of a polymer, the net-like structural body having penetrating pores with a pore diameter of 0.01-10 ?m, wherein the net-like structural body is present at the surface and at the internal of the porous substrate and the non-fibrillar fibers having an average fiber diameter of 0.01-10 ?m and the net-like structural body are entangled; to a separator for an electrochemical element comprising the porous sheet; and to a method for manufacturing the porous sheet.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: June 19, 2012
    Assignee: Mitsubishi Paper Mills Limited
    Inventors: Takahiro Tsukuda, Masatoshi Midorikawa, Tomohiro Sato
  • Patent number: 8197665
    Abstract: Aqueous composition containing at least one salt in an amount of at least 30 g/kg of composition, of which the total organic carbon content is at least 1 ?g of C/l and at most 5 g of C/l of composition and which contains at least one carboxylic acid.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: June 12, 2012
    Assignee: Solvay (Societe Anonyme)
    Inventors: Philippe Krafft, Patrick Gilbeau, Dominique Balthasart, Andre Daene
  • Patent number: 8197658
    Abstract: In order to solve various problems such as a reduction in a paint resin with the progress of electrodeposition coating treatment and remelting of a coating film or the occurrence of pinholes caused by an increased concentration of an electrolyte as a result of the reduction, upsizing of a hollow electrode with a membrane for electrodeposition coating combined with a barrier membrane (e.g., an ion exchange membrane) and an increase in the number of components should be avoided. In order to realize this, a barrier membrane 20 such as an ion exchange membrane is attached to the exterior surface of an electrode main body 10, which is in a hollow state made of a conductive material and configured so as to allow a liquid to pass through freely between the inside and outside of the electrode serving as a support.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: June 12, 2012
    Assignees: Daiso Co., Ltd., AGC Engineering Co., Ltd.
    Inventors: Shouhei Matsui, Yasushi Yoshida, Nobuyoshi Shoji, Yukio Matsumura
  • Patent number: 8197654
    Abstract: Methods for preparing an electrodepositable coating composition are provided comprising: (a) mixing a flatting agent with an electrodepositable resin; (b) combining the mixture of (a) with a pigment paste to form a flatting agent-pigment paste mixture; and (c) combining the flatting agent-pigment paste mixture of (b) with an electrodepositable resin. Methods of coating articles including electrodepositable coating compositions prepared by these methods, as well as processes for coating electroconductive substrates with compositions prepared by these methods are also provided.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: June 12, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Charles R. Hickenboth, Walter F. Kasper, James E. Poole