Patents Examined by Bruce Bell
  • Patent number: 8317996
    Abstract: A method is provided for corrosion protection in a marine construction, such as a marine surface vessel or a marine structure, the marine construction including at least one metal element and a sacrificial anode adapted to be at least partly immerged in an electrolyte in the form of water, in which the marine construction is at least partly immerged, the at least one metal element including a metal part, the sacrificial anode being provided for corrosion protection of the metal part. The method includes connecting at least one of the at least one metal element and the sacrificial anode to a DC electrical power outlet so as to allow an electric de-passivation current through an electrical circuit including the sacrificial anode, the metal element and the electrolyte.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 27, 2012
    Assignee: AB Volvo Penta
    Inventors: Carl Nelvig, Petter Igede
  • Patent number: 8313622
    Abstract: An electrochemical anode is formed using friction stir welded (FSW) joints. A FSW joint may be formed between the bus bar and anode sheet or the lead encapsulation and anode sheet. The FSW joints may also comprise fillet and butt joints. FSW joints may also be utilized to seal the ends of the electrochemical anodes to prevent corrosion.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 20, 2012
    Assignee: RSR Technologies, Inc.
    Inventors: Timothy W. Ellis, Matthew Burr, Elton Jones
  • Patent number: 8313624
    Abstract: An inert anode material for use in electrolytic processes comprises calcium ruthenate. [Note that the nominal formula for this compound is CaRuO3, although different stoichiometries may apply in practice].
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 20, 2012
    Assignee: Green Metals Limited
    Inventors: Derek John Fray, Gregory Russlan Doughty
  • Patent number: 8313623
    Abstract: A cathode for electrolytic processes, particularly suitable for hydrogen evolution in chlor-alkali electrolysis comprises a metal substrate provided with a catalytic coating made of two layers containing palladium, rare earths (such as praseodymium) and a noble component selected between platinum and ruthenium. The rare earth percent amount by weight is lower in the outer layer than in the inner layer.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 20, 2012
    Assignee: Industrie de Nora S.p.A.
    Inventors: Antonio Lorenzo Antozzi, Alice Calderara, Marianna Brichese
  • Patent number: 8313637
    Abstract: A wear of an electrode is prevented as much as possible, thereby efficiently electrolyzing a sulfuric acid solution and the like. An electrolysis method includes: passing an electrolytic solution through an electrolysis cell including at least a pair of an anode and a cathode; and supplying the electrodes with an electric power, so as to electrolyze the electrolytic solution, wherein a viscosity of the electrolytic solution is set in a range in response to a current density upon the electric power supply to carry out the electrolysis. The viscosity of a sulfuric acid solution as the electrolytic solution is equal to or less than 10 cP when the current density is equal to or less than 50 A/dm2, the viscosity of the sulfuric acid solution is equal to or less than 8 cP when the current density is from more than 50 to 75 A/dm2, and the viscosity of the sulfuric acid solution is equal to or less than 6 cP when the current density is from more than 75 to 100 A/dm2.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: November 20, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventors: Minoru Uchida, Tatsuo Nagai, Shunichi Kanamori
  • Patent number: 8308920
    Abstract: In various embodiments, the present invention provides an electrolytic cell contact bar having a first pole and a pair of second poles. The second poles are opposite in charge to the first pole and each of the pair of second poles are adjacent to and parallel to the first pole. In various embodiments, the contact bar may include an electrode holder capable of holding at least one electrode.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 13, 2012
    Assignee: Freeport-McMoran Corporation
    Inventors: Bret Ashford, William A Ebert, Fernando D Mollo Vega, Samuel Rasmussen, Timothy G Robinson, Scot P Sandoval
  • Patent number: 8308914
    Abstract: An electrolytic ozone cell anode spring fastening board structure includes a solid polymer electrolyte membrane (1), an anode electrocatalyst layer (2), a diffusion layer (3), frame body and support parts (5). A diffusion layer counterpiece (4) has one side attached to the diffusion layer (3), the other side of the diffusion layer counterpiece (4) equipped with a centered elevated step, which contacts the center of the convex side of a spherical spring board (6). In addition, the solid polymer electrolyte membrane (1), frame body and support parts (5), diffusion layer (3), diffusion layer counterpiece (4) and spring board (6) are held together by mechanical fastening means. It prevents a decrease in ozone generation rate in electrolytic ozone cell that can occur from the metal board deformation and thinning of the anode electrocatalyst layer.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: November 13, 2012
    Inventor: Mingyung Hsu
  • Patent number: 8303795
    Abstract: In the method and system, a number of electrolytic cells are arranged as a cell group, which cells are separated by a number of partition walls; in each cell, a number of anodes and cathodes are arranged in an alternating order, so that in each cell, next to each anode, there is arranged a cathode, and so that in each cell, each individual anode is fitted in the same anode line with the anode of the adjacent cell, and in each cell, each individual cathode is fitted in the same cathode line with the cathode of the adjacent cell, and each anode is galvanically connected to at least one cathode of the adjacent cell. The flowing direction of the current passing in the cell group is deviated in different directions in order to make the current flow mainly in the direction of the cell group.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: November 6, 2012
    Assignee: Outotec Oyj
    Inventors: Henri Virtanen, Olli Jarvinen, Lauri Palmu, Ilkka Laitinen
  • Patent number: 8303784
    Abstract: A bandoleer of article carriers includes a carrier band, and a plurality of carrier racks connected with a bottom edge of the carrier band each by means of a connecting plate and arranged at regular intervals. Each carrier rack shows a substantially inverted-V shape and has a pair of elastic arms extending downward from two ends of a bottom edge of the connecting plate and gradually inclined away from each other. Two distal ends of the elastic arms protrude oppositely to each other to form a pair of hook portions. Upper portions of two opposite side edges of the connecting plate oppositely protrude sideward to form two blocking portions. Lower portions of the two opposite side edges of the connecting plate oppositely protrude sideward and then are bent towards two opposite directions perpendicular to the plane of the connecting plate to form two lying-L shaped resisting portions.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 6, 2012
    Assignee: Cheng Uei Precision Industry Co., Ltd.
    Inventor: Chih-Lin Yang
  • Patent number: 8303793
    Abstract: The invention relates to a method of providing an electric current taker made from silver and having a highly electroconductive contact surface into an aluminium support bar to be used in electrolysis.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Valvas Oy
    Inventor: Niko Hagner
  • Patent number: 8298397
    Abstract: A method for corrosion protection in a marine construction including a plurality of metal elements and at least one reference electrode at least partly immerged in water, the metal elements including an anode and a metal part, the anode being provided for corrosion protection of the metal part includes measuring an electric potential of the metal part with the reference electrode as a ground reference. At least one of the metal elements and at least one of the at least one reference electrode are connected to a DC electrical power outlet so as to allow an electrical regeneration current through an electrical circuit including the at least one of the metal elements, the at least one of the at least one reference electrode and the electrolyte so that the reference electrode is anodized.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: October 30, 2012
    Assignee: AB Volvo Penta
    Inventor: Carl Nelvig
  • Patent number: 8298382
    Abstract: Apparatus for connection to a metallic structure, the apparatus comprises a transformer rectifier unit operable to output a DC current for cathodic protection of a metallic structure, and a modulator unit connected to receive a DC output from the transformer rectifier unit. The modulator unit is arranged for connection to a metallic structure, and is operable to produce a modulated current which is applied to such a metallic structure when the apparatus is in use, such that the metallic structure is detectable by a wireless locating device. The modulator unit is operable to be controlled remotely.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 30, 2012
    Assignee: Abriox Limited
    Inventors: Jason Hanlon, Thomas Josef McGee
  • Patent number: 8293080
    Abstract: A conductive contact ring for an electroplating or electrodeposition process on a cylindrical surface includes a frame defining an opening through which the object can be passed and an array of electrically conductive fibers spanning the opening. The frame is electrically conductive and is connected to a DC power source in the process. Two or more contact rings can be used in a process to provide consistent electrical contact with the surface sliding therethrough. A single contact ring can have first and second groups of filaments spaced from each other along the axial length of the surface.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 23, 2012
    Assignee: Illinois Tool Works Inc.
    Inventors: Michael P. Barnard, Hieyoung W. Oh, Jeffrey W. Richardson
  • Patent number: 8293083
    Abstract: Provided are fabrication, characterization and application of a nanodisk electrode, a nanopore electrode and a nanopore membrane. These three nanostructures share common fabrication steps. In one embodiment, the fabrication of a disk electrode involves sealing a sharpened internal signal transduction element (“ISTE”) into a substrate, followed by polishing of the substrate until a nanometer-sized disk of the ISTE is exposed. The fabrication of a nanopore electrode is accomplished by etching the nanodisk electrode to create a pore in the substrate, with the remaining ISTE comprising the pore base. Complete removal of the ISTE yields a nanopore membrane, in which a conical shaped pore is embedded in a thin membrane of the substrate.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: October 23, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Henry S White, Bo Zhang, Ryan J White, Eric N Ervin, Gangli Wang
  • Patent number: 8282796
    Abstract: A carbonaceous substrate of the present invention is such that an X-ray diffraction pattern thereof is a complex profile and includes at least two (002) diffraction lines; and the substrates contains crystallites with different interlayer spacings. Further, in the X-ray diffraction pattern, (002) diffraction lines between 2?=10° and 2?=30° have an asymmetric shape; and the X-ray diffraction pattern includes at least two pattern components which are a diffraction line whose center is at 2?=26° and a diffraction line whose center is at a lower angle than 2?=26°. Further, the carbonaceous substrate contains crystals wherein the periodic distance d002 is 0.34 nm or more and the crystallite size Lc002 is 20 nm or less based on the X-ray diffraction lines. An electrodes for fluorine electrolysis of the present invention includes the carbonaceous substrate on which a conductive diamond thin film is formed.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 9, 2012
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Rie Tao, Takanori Kawano, Yoshio Shodai
  • Patent number: 8277620
    Abstract: Embodiments of the present techniques provide electrolyzers made using thermoformed electrode assemblies and diaphragm assemblies. Each electrode assembly is made from two plastic rings and an electrode plate using a twin sheet thermoforming technique. A first plastic ring is laid in a mold having the appropriate shape to form the electrode assembly. The electrode plate is laid on top of the first plastic ring and is generally centered on the ring. The second plastic ring is laid over the electrode plate, and is generally centered over the electrode plate. The plastic is heated to soften the plastic, and a vacuum is pulled on the mold to pull the softened plastic into the shape of the mold. The mold is closed over the assembly to seal the two plastic rings together. After cooling, the molded part may be removed, resulting in a hollow plastic rim surrounding an electrode plate.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 2, 2012
    Assignee: General Electric Company
    Inventor: Richard Scott Bourgeois
  • Patent number: 8277624
    Abstract: A workpiece holder for fluid processing a workpiece including a transportable frame, a flexible member connected to the frame and defining at least one retaining feature, and a ring comprising at least one engagement feature engageable with the at least one retaining feature of the flexible member, wherein the flexible member is flexed to provide a force to the at least one engagement feature to cause the ring to form a barrier to fluid entry with the workpiece.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: October 2, 2012
    Assignee: Tel Nexx, Inc.
    Inventors: Arthur Keigler, John Harrell, Zhenqiu Liu, Qunwei Wu
  • Patent number: 8277626
    Abstract: The present invention is directed to a method for coating a substrate wherein the substrate is electrically conductive, the method comprising simultaneously applying a plurality of electrically conductive liquid materials to different portions of the substrate wherein at least one of the electrically conductive liquid materials comprises an ionic compound; and applying an electrical current to at least one of the liquid materials thereby depositing the ionic compound onto the substrate.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 2, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Gary Orosz, Donald W. Boyd, Benjamin Kabagambe, James W. McCamy, Douglas A. McPheron
  • Patent number: 8277623
    Abstract: The present invention relates to a conductive diamond electrode, comprising a substrate having a plurality of convex and concave part disposed over the entire surface of the conductive diamond electrode, and a diamond film coated on the surface of said substrate, wherein the width of each convex part of said convex and concave part is in a range from 0.2 mm to 1 mm. The present invention can provide a conductive diamond electrode, applying a thin film of conductive diamond and a thick substrate, being less expensive than a self-supported type conductive diamond electrode and also having mechanical strength enough to be used in the zero-gap electrolysis, functioning stably for a long time with smooth water supply or gas liberation, and an ozone generator using the conductive diamond electrode.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: October 2, 2012
    Assignee: Chlorine Engineers Corp., Ltd.
    Inventors: Masaaki Kato, Rie Kawaguchi
  • Patent number: 8277619
    Abstract: An electroplating apparatus for depositing a conductive material on a semiconductor wafer includes a vessel for holding an electroplating bath, a support for holding a semiconductor wafer within the vessel and beneath a surface of the bath; first and second electrodes within the vessel, between which an electrical current may flow causing conductive material to be electrolytically deposited onto the wafer, a third electrode disposed outside of the bath for applying a static electric charge to the wafer, and an electrical power supply coupled with the third electrode.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: October 2, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Liang Chang, Shau-Lin Shue