Patents Examined by Caixia Lu
  • Patent number: 11760819
    Abstract: The purpose of the present invention is to obtain an ethylene??-olefin?non-conjugated polyene copolymer that has a low permanent compression set at low temperatures, is flexible, and has an excellent balance of rubber elasticity at low temperatures and tensile strength at normal temperatures. This ethylene-based polymer is an ethylene??-olefin?non-conjugated polyene copolymer that includes units derived from ethylene (A), units derived from an ?-olefin (B) containing 4-20 carbon atoms, and units derived from a non-conjugated polyene (C) and satisfies (1)-(4). (1) The molar ratio of (A) to (B) is 40/60-90/10, (2) the contained amount of the units derived from (C) is 0.1-6.0 mol %, (3) ML(1+4) 125° C. is 5-100, and (4) the B value is 1.20 or more.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 19, 2023
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Koji Endo, Mayumi Hiwara, Sadahiko Matsuura, Yusuke Mizobuchi, Yuichi Yamamura, Yuji Noguchi, Yuji Ishii, Tatsuya Sakai, Keisuke Shishido, Kotaro Ichino, Kiyohide Inomata, Fumito Takeuchi, Kenta Ide
  • Patent number: 11760814
    Abstract: This disclosure is generally directed to polymerization catalysts derived from 1,5-diazabicyclooctanes, catalyst systems utilizing such catalysts, and processes to polymerize alpha olefins therewith.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: September 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gursu Culcu, Catherine A. Faler
  • Patent number: 11753488
    Abstract: Methods for preparing metallocene-based catalyst compositions include the steps of contacting an alcohol compound and an organoaluminum compound for a first period of time to form a precontacted mixture, and contacting the precontacted mixture with an activator-support and a metallocene compound for a second period of time to form the catalyst composition. Such catalyst compositions can contain an activator-support, a metallocene compound, an organoaluminum compound, and a dialkyl aluminum alkoxide, and these catalyst compositions have increased catalytic activity for the polymerization of olefins.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: September 12, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Ryan N. Rose, Max P. McDaniel, Zhihui Gu
  • Patent number: 11753486
    Abstract: The present invention relates to a process for producing of solid particulate olefin polymerisation catalyst or catalyst carrier comprising forming a solution of the catalyst or a catalyst carrier in a solvent, subjecting the solution into an atomization by spraying the solution via a capillary vibrating spray nozzle with a capillary orifice having a diameter of 5 to 100 ?m generating a laminar jet of liquid, which disintegrates into liquid droplets entering into the spray-dryer, transforming the droplets with aid of a gas to solid particulate catalyst or carrier in the spray-dryer and recovering the solid particulate olefin polymerisation catalyst or carrier having particle size distribution defined by a volumetric SPAN of 0.7 or less. The invention further relates to the catalyst produced by the methods, and use thereof in olefin polymerisation process.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: September 12, 2023
    Assignee: BOREALIS AG
    Inventors: Alexander Reznichenko, Jari-Jussi Ruskeeniemi, Joseph Thorman, Xiao Dong Chen, Victor Sumerin
  • Patent number: 11746164
    Abstract: A method of making a polyolefin nanocomposite including, mixing a zinc-aluminum layered double hydroxide (LDH), and a zirconocene complex in a non-polar solvent to form a first mixture. Prior to the mixing the zirconocene complex is not supported on the zinc-aluminum LDH. The method further includes sonicating the first mixture for at least one hour to form a homogeneous slurry. The method further includes degassing the homogenous slurry and adding at least one olefin gas to form a second mixture. The method further includes adding an aluminoxane catalyst to the second mixture and reacting for at least 10 minutes to form a reaction mixture including the polyolefin nanocomposite. The method further includes separating the polyolefin nanocomposite from the reaction mixture.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: September 5, 2023
    Assignees: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, S-OIL Corporation
    Inventors: Mamdouh A. Al-Harthi, Sung-Gil Hong, Hassam Mazhar, Farrukh Shehzad
  • Patent number: 11746168
    Abstract: The present disclosure provides an olefin polymer having excellent film processability and physical properties, and a preparation method of the same.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: September 5, 2023
    Inventors: Oh Joo Kwon, Sol Cho, Seung Ki Park, Ki Soo Lee, Heon Yong Kwon, Dae Sik Hong, Sung Hyun Park, Sung Ho Park, Jin Young Lee
  • Patent number: 11746163
    Abstract: The present disclosure describes highly soluble activators for use in olefin polymerization processes. These activators are ionic ammonium borates and have the general formula [Ar(ER1R2H)(R3)][tetrakis(perfluoroaryl)borate] where Ar is an aromatic group; E is nitrogen or phosphorous; R1 is independently selected from aliphatic hydrocarbyl groups containing 1 to 30 carbon atoms, preferentially methyl; R2 and R3 are independently selected from aliphatic hydrocarbyl groups containing 10 to 30 carbon atoms and at least one internal olefin. The inventive activators dissolve in isohexane or methylcyclohexane at 25° C. to form homogeneous solutions of at least 10 mM concentration. When combined with a group 4 metallocene to form an active olefin polymerization catalyst, the inventive activators are shown to have activity similar to controls.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: September 5, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Catherine A. Faler, Margaret T. Whalley
  • Patent number: 11739171
    Abstract: A catalyst configured to be handled more easily than conventional catalysts and configured to copolymerize an ?-olefin and a (meth)acrylic acid ester with high activity. The objects are achieved by polymerization using an olefin polymerization catalyst which contains a metal complex obtained by reacting a ligand having a specific structure and a transition metal compound containing a transition metal selected from nickel or palladium having a specific structure.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: August 29, 2023
    Assignees: JAPAN POLYETHYLENE CORPORATION, JAPAN POLYPROPYLENE CORPORATION
    Inventors: Yohei Konishi, Hiromasa Tanahashi, Hisashi Ohtaki, Naomasa Sato
  • Patent number: 11739169
    Abstract: It has become desirable to limit or exclude aromatic solvents, such as toluene, from polymerization reactions. For polymerization reactions employing a non-metallocene transition metal complex as a precursor to a polymerization catalyst, exclusion of aromatic solvents may be difficult due to the limited solubility of such complexes in aliphatic hydrocarbon solvents. Aliphatic hydrocarbon solutions suitable for conducting olefin polymerization reactions, particularly solution polymerization reactions, may comprise: a non-metallocene transition metal complex dissolved in an aliphatic hydrocarbon solvent at a concentration ranging from about 2 mM to about 20 mM at 25° C. in the presence of an organoaluminum compound. A molar ratio of aluminum of the organoaluminum compound to transition metal of the transition metal complex is about 1:1 or greater, and the organoaluminum compound comprises at least about 8 carbons per aluminum.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: August 29, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Peijun Jiang, Francis C. Rix, Charles J. Harlan, Jo Ann M. Canich
  • Patent number: 11738334
    Abstract: This invention relates to a supported catalyst system comprising: (i) at least one first catalyst component comprising a group 4 bis(phenolate) complex; (ii) at least one second catalyst component comprising a 2,6-bis(imino)pyridyl iron complex; (iii) activator; and (iv) support. The catalyst system may be used for preparing polyolefins, such a bimodal polyethylene, typically in a gas phase polymerization.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: August 29, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Dongming Li, Kevin A. Stevens, Jo Ann M. Canich, John R. Hagadorn, Ramyaa Mathialagan, Timothy M. Boller
  • Patent number: 11738311
    Abstract: Chemically inert, mechanically tough, cationic metallo-polyelectrolytes designed as durable anion-exchange membranes (AEMs) via ring-opening metathesis polymerization (ROMP) of cobaltocenium-containing cyclooctene with triazole as the only linker group, followed by backbone hydrogenation to provide a new class of AEMs with a polyethylene-like framework and alkaline-stable cobaltocenium cation for ion transport, which exhibit excellent thermal, chemical and mechanical stability, as well as high ion conductivity.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: August 29, 2023
    Assignee: University of South Carolina
    Inventors: Chuanbing Tang, Tianyu Zhu
  • Patent number: 11735293
    Abstract: Methods for simultaneously determining the concentrations of transition metal compounds in solutions containing two or more transition metal compounds are described. Polymerization reactor systems providing real-time monitoring and control of the concentrations of the transition metal components of a multicomponent catalyst system are disclosed, as well as methods for operating such polymerization reactor systems, and for improving methods of preparing the multicomponent catalyst system.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 22, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Richard M. Buck, Qing Yang
  • Patent number: 11731115
    Abstract: A composition containing the following components: (a) a hydrosilylation catalyst comprising a metal-ligand complex, and (b) an inhibitor of the catalyst, wherein the inhibitor differs from the ligand of the metal-ligand complex and is represented by formula (I): X—CHR—CO—Y??(I), wherein —X represents —NO2, —S(?O)R, or Rc2RaC—CO—; Y represents 2-furyl, —S(?O)R, —CN, —NO2, or —CRbxRd3-x; Ra and Rb is independently selected from the group consisting of —O—R, —O—CO—R, —CO—O—R, 2-furyl, —S(?O)R, —CN, —NO2, —F, —Cl, and —Br; each of R is independently selected from the group consisting of —H, optionally fluorinated C1-C8-alkyl, —F, —Cl, and —Br; each of Rc and each of Rd is independently selected from the group consisting of —H, optionally fluorinated C1-C8-alkyl, —F, —Cl, and —Br; and x is 0 or 1.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: August 22, 2023
    Assignee: Joanneum Research Forschungsgesellschaft mbH
    Inventors: Krzysztof Krawczyk, Paul Patter
  • Patent number: 11732069
    Abstract: The present disclosure relates to a polypropylene for injection having a high content of ultra-high molecular weight and excellent rigidity, and a method for preparing the same.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: August 22, 2023
    Inventors: Seok Hwan Kim, Hyunsup Lee, Seong Min Chae, Taejin Kim, Dae Sik Hong, Sang Jin Jeon, Hee Kwang Park
  • Patent number: 11713364
    Abstract: The present disclosure provides base stocks and or diesel fuel, and processes for producing such base stocks and or diesel fuel by polymerizing alpha-olefins and internal olefins. The present disclosure further provides polyolefin products useful as base stocks and or diesel fuel. In at least one embodiment, a process includes: i) introducing, neat or in the presence of a solvent, a feed comprising a branched C5-C30 internal olefin, with a catalyst compound comprising a group 8, 9, 10, or 11 transition metal and at least one heteroatom and ii) obtaining a C6-C100 polyolefin product having one olefin, a methylene content of from about 1 wt % to about 98 wt %, and or a methyl content of from about 1 wt % to about 75 wt %. The feed may further include a linear C4-C30 internal olefin, a C2-C30 alpha-olefin, or a mixture thereof.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 1, 2023
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Aaron Sattler, Suzzy C. H. Ho, Michele L. Paccagnini, Christian E. Padilla
  • Patent number: 11712687
    Abstract: A catalyst system including the product of the combination of an unbridged Group 4 metallocene compound and a 2,6-bis(imino)pyridyl iron complex is provided. A process for the polymerization of monomers (such as olefin monomers) and a polymer produced therefrom are also provided.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: August 1, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Kevin A. Stevens, Laughlin G. McCullough, David F. Sanders, Subramaniam Kuppuswamy, Matthew S. Bedoya
  • Patent number: 11708438
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: July 25, 2023
    Assignee: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Patent number: 11708437
    Abstract: This disclosure relates to ethylene interpolymer compositions and films prepared therefrom. Specifically: ethylene interpolymer products having: a dimensionless Long Chain Branching Factor, LCBF, greater than or equal to 0.001; a residual catalytic metal of from ?0.03 to ?5 ppm of hafnium, and; a dimensionless unsaturation ratio, UR, of from ??0.40 to ?0.06, wherein UR is defined by the following relationship; UR=(SCU?TU)/TU, where SCU is the amount of a side chain unsaturation per 100 carbons and TU is amount of a terminal unsaturation per 100 carbons, in said ethylene interpolymer product. The disclosed ethylene interpolymer products have a melt index from about 0.3 to about 500 dg/minute, a density from about 0.855 to about 0.975 g/cc, a polydispersity (Mw/Mn) from about 1.7 to about 25 and a Composition Distribution Breadth Index (CDBI50) from about 1% to about 98%.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: July 25, 2023
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Niousha Kazemi, Monika Kleczek, Vinod Konaganti, Bronwyn Gillon, Shivendra Goyal, Fazle Sibtain, Sepideh Kasiri, Stephen Salomons, Kenneth Taylor, Mehdi Keshtkar
  • Patent number: 11702488
    Abstract: The polyethylene according to the present invention has narrow particle size distribution, and can minimize a change in the crystal structure, and thus, it can be reacted with chlorine to prepare chlorinated polyethylene having excellent chlorination productivity and thermal stability.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: July 18, 2023
    Inventors: Sunghyun Park, Si Jung Lee, Bog Ki Hong, Yi Young Choi, Myunghan Lee
  • Patent number: 11697699
    Abstract: A method for evaluating long-term durability of a resin for piping is provided. Unlike the conventional FNCT evaluation method requiring a long period of time, the method disclosed herein is capable of predicting long-term durability of a resin for piping in a short time, by a simple calculation using a content of tie molecules, an entanglement molecular weight (Me) and a content of ultrahigh molecular weight components. In addition, the olefinic polymer is configured to have a predetermined relationship in relation to the content of tie molecules, the entanglement molecular weight (Me) and the content of ultrahigh molecular weight components, whereby the polymer of the present application can be used in the manufacture of a heating pipe requiring excellent long-term durability.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 11, 2023
    Inventors: Sung Hyun Park, Hyun Sup Lee, Jong Sang Park, Joong Soo Kim, Young Suk You, Dae Sik Hong, Myung Han Lee