Patents Examined by Cesar Lopez
  • Patent number: 8786056
    Abstract: A method of forming a semiconductor light emitting element. The method can include forming a seed layer on a semiconductor layer assembly including at least one nitride semiconductor layer. An insulating mask can be formed on the seed layer. The insulating mask can include a plurality of element areas separated by cross spaces. Each element area of the plurality of element areas can be connected to at least one of the other element areas of the plurality of element areas. The seed layer can be plated such that a plating substrate is formed in each of the plurality of element areas.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Nichia Corporation
    Inventors: Kentaro Watanabe, Giichi Marutsuki, Yuya Yamakami
  • Patent number: 8786051
    Abstract: Disclosed are a transistor (e.g., bipolar junction transistor (BJT) or a heterojunction bipolar transistor (HBT)) and a method of forming the transistor with a narrow in-substrate collector region for reduced base-collector junction capacitance. The transistor has, within a substrate, a collector region positioned laterally adjacent to a trench isolation region. A relatively thin seed layer covers the trench isolation region and collector region. This seed layer has a monocrystalline center, which is aligned above and wider than the collector region (e.g., due to a solid phase epitaxy regrowth process), and a polycrystalline outer section. An intrinsic base layer is epitaxially deposited on the seed layer such that it similarly has a monocrystalline center section that is aligned above and wider than the collector region. An extrinsic base layer is the intrinsic base layer and has a monocrystalline extrinsic base-to-intrinsic base link-up region that is offset vertically from the collector region.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, David L. Harame, Qizhi Liu
  • Patent number: 8779575
    Abstract: A technology enabling reduction of the size of a semiconductor device including a micro and a power MOSFET is provided. The semiconductor device is obtained by single packaging a first semiconductor chip with a micro formed therein and second semiconductor chips with a power MOSFET formed therein. This makes it possible to reduce the size of the semiconductor device as compared with cases where a first semiconductor chip with a micro formed therein and second semiconductor chips with a power MOSFET formed therein are separately packaged.
    Type: Grant
    Filed: December 26, 2010
    Date of Patent: July 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Minoru Shinohara
  • Patent number: 8779553
    Abstract: A method of circuit design involving an integrated circuit (IC) having an interposer can include identifying an active resource implemented within the IC within a region of the interposer exposed to an amount of stress that exceeds a normalized amount of stress on the interposer and selectively assigning an element of the circuit design to be implemented within the IC to the active resource according to a stress-aware analysis of the circuit design as implemented within the IC.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: July 15, 2014
    Assignee: Xilinx, Inc.
    Inventor: Arifur Rahman
  • Patent number: 8772754
    Abstract: A method of manufacturing a semiconductor storage device according to an embodiment includes: stacking a first wiring layer; stacking a memory cell layer on the first wiring layer; and stacking a stopper film on the memory cell layer. The method of manufacturing a semiconductor storage device also includes: etching the stopper film, the memory cell layer, and the first wiring layer; polishing an interlayer insulating film to the stopper film after burying the stopper film, the memory cell layer, and the first wiring layer with the interlayer insulating film; performing a nitridation process to the stopper film and the interlayer insulating film to form an adjustment film and a block film on surfaces of the stopper film and the interlayer insulating film, respectively; and forming a second wiring layer on the adjustment film, the second wiring layer being electrically connected to the adjustment film.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: July 8, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Murato Kawai
  • Patent number: 8772794
    Abstract: Disclosed are a light emitting device package and a lighting system in which the light emitting device package includes a first cavity in a first region of the body, a second cavity in a second region of the body, first and second lead frames spaced apart from each other in the first cavity, a third lead frame spaced apart from the second lead frame in the second cavity, a first light emitting device on the first and second lead frames in the first cavity, a second light emitting device on the second and third lead frames in the second cavity, and a molding member in the first and second cavities.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 8, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Buemyeon Lee
  • Patent number: 8765525
    Abstract: A method of manufacture of an integrated packaging system includes: providing a substrate; mounting an integrated circuit on the substrate; mounting an interposer substrate having an interposer pad on the integrated circuit; covering an encapsulant over the integrated circuit and the interposer substrate; forming a hole through the encapsulant aligned over the interposer pad; and placing a conductive connector on and in direct contact with the interposer pad.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: July 1, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: In Sang Yoon, DeokKyung Yang, Sungmin Song
  • Patent number: 8748302
    Abstract: In a replacement gate approach, the dielectric material for laterally encapsulating the gate electrode structures may be provided in the form of a first interlayer dielectric material having superior gap filling capabilities and a second interlayer dielectric material that provides high etch resistivity and robustness during a planarization process. In this manner, undue material erosion upon replacing the placeholder material may be avoided, which results in reduced yield loss and superior device uniformity.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: June 10, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Christopher M. Prindle, Johannes F. Groschopf, Andreas R. Ott
  • Patent number: 8741738
    Abstract: The disclosure relates to integrated circuit fabrication, and more particularly to a semiconductor apparatus with a metallic alloy. An exemplary structure for an apparatus comprises a first silicon substrate; a second silicon substrate; and a contact connecting each of the first and second substrates, wherein the contact comprises a Ge layer adjacent to the first silicon substrate, a Cu layer adjacent to the second silicon substrate, and a metallic alloy between the Ge layer and Cu layer.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi Hsun Chiu, Ting-Ying Chien, Ching-Hou Su, Chyi-Tsong Ni
  • Patent number: 8716855
    Abstract: An integrated circuit system having an interposer and an integrated circuit with first and second bond pads, the integrated circuit die bonded to the interposer using the first bond pads. The integrated circuit having circuit blocks, that operate at different operating voltages and voltage regulator modules die bonded to the second bond pads of the integrated circuit. The voltage regulator modules converting a power supply voltage to the operating voltage of a respective circuit block and supply the respective operating voltage to the circuit block via the second bond pads.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-An Chi, Mark Shane Peng, Yun-Han Lee
  • Patent number: 8710617
    Abstract: In a region located between a collector electrode and a semiconductor substrate, there are a portion where a hollow region is located and a portion where no hollow region is located. Between the collector electrode and the portion where no hollow region is located in the semiconductor substrate, a floating silicon layer electrically isolated by insulating films is formed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 29, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Junichi Yamashita, Tomohide Terashima
  • Patent number: 8659071
    Abstract: The invention provides a SONOS structure, a manufacturing method thereof and a semiconductor device with the SONOS structure. The SONOS structure comprises: a first tunneling oxide layer formed on a substrate, a charge storage silicon nitride layer, a second silicon oxide layer, a thin graded silicon nitride layer having graded Si/N content formed on the second silicon oxide layer, a third silicon oxide layer formed on the thin graded silicon nitride layer, and a polysilicon control gate. The Si/N content ratio of the silicon nitride of the thin graded silicon nitride layer increases gradually, wherein the silicon nitride of the graded silicon nitride layer closer to the second silicon oxide layer contains higher nitride content, and the silicon nitride of the graded silicon nitride layer closer to the third silicon oxide layer contains higher silicon content.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 25, 2014
    Assignee: Shanghai Huali Microelectronics Corporation
    Inventor: Zhi Tian
  • Patent number: 8653645
    Abstract: An object of the present invention is to sufficiently supply power to three-dimensionally stacked LSI chips and to dispose common through vias in chips of different types. Also, another object is to propose a new test method for power-supply through silicon vias.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: February 18, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Masanao Yamaoka, Kenichi Osada
  • Patent number: 8603906
    Abstract: Provided is a three-dimensional semiconductor memory device. The three-dimensional semiconductor memory device includes a substrate that has a cell array region including a pair of sub-cell regions and a strapping region interposed between the pair of sub-cell regions. A Plurality of sub-gates are sequentially stacked on the substrate in each of the sub-cell regions, and interconnections are electrically connected to extensions of the stacked sub-gates, respectively, which extend into the strapping region. Each of the interconnections is electrically connected to the extensions of the sub-gate which are disposed in the pair of the sub-cell regions, respectively, and which are located at the same level.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sunil Shim, Sunghoi Hur, Hansoo Kim, Jaehoon Jang, Hoosung Cho
  • Patent number: 8592237
    Abstract: A method for manufacturing a thin film transistor substrate including forming bus lines by etching a surface of a substrate to form bus line patterns and filling the bus line patterns with a bus line metal; forming a semiconductor channel layer at one portion of a pixel area defined by the bus lines; and forming source-drain electrodes on the semiconductor channel layer, a pixel electrode extending from the drain electrode within the pixel area, and a common electrode parallel with the pixel electrode. The bus lines are formed as being thicker but the bus lines are buried in the substrate so that the line resistance can be reduced and the step difference due to the thickness of bus line does not affect the device.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 26, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Jungil Lee, Injae Chung, Joonyoung Yang, Gisang Hong
  • Patent number: 8581287
    Abstract: A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer in order to emit various colored lights including white light. The device can include a board, a frame located on the board, at least one light-emitting chip mounted on the board, the wavelength converting layer located between an optical plate and an outside surface of the chips so that a density of a peripheral region is lower than that of a middle region, and a reflective material layer disposed at least between the frame and a side surface of the wavelength-converting layer. The device can have the reflective material layer form each reflector and can use a wavelength converting layer having different densities, and therefore can emit a wavelength-converted light having a high light-emitting efficiency and a uniform color tone from various small light-emitting surfaces.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: November 12, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Takeshi Waragaya, Kosaburo Ito, Toshihiro Seko, Kazuhiko Ueno, Soji Owada
  • Patent number: 8530996
    Abstract: A semiconductor device includes a high-side field-effect transistor including a high-side drain electrode, a high-side gate electrode, and a high-side source electrode; and a first low-side field-effect transistor including a first low-side drain electrode, a first low-side gate electrode and a first low-side source electrode, wherein the high-side source electrode and the first low-side drain electrode are shared as a single source and drain electrode, and the high-side drain electrode, the high-side gate electrode, the source and drain electrode, the first low-side gate electrode and the first low-side source electrode are arranged in this order while being interposed by gaps, respectively.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Ken Shono
  • Patent number: 8507897
    Abstract: An organic EL element includes a functional layer disposed between an anode and a cathode on a substrate and including laminated different organic thin films including a light-emitting layer, and a partition wall which defines the functional layer. Each of the organic thin films is formed by applying a liquid containing a functional layer-forming material on a film-forming region defined by the partition wall and then drying the liquid. The partition wall has at least one step portion provided in the side wall thereof in the thickness direction, and liquid repellency is imparted to the uppermost surface of the partition wall and the upper surface of the step portion. The surface of the side wall excluding the step portion has lyophilicity in comparison with the upper surface of the step portion.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: August 13, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Hirokazu Yanagihara
  • Patent number: 8507978
    Abstract: An integrated structure includes a plurality of split-gate trench MOSFETs. A plurality of trenches is formed within the silicon carbide substrate composition, each trench is lined with a passivation layer, each trench being substantially filled with a first conductive region a second conductive region and an insulating material having a dielectric constant similar to a dielectric constant of the silicon carbide substrate composition. The first conductive region is separated from the passivation layer by the insulating material. The first and second conductive regions form gate regions for each trench MOSFET. The first conductive region is separated from the second conductive region by the passivation layer. A doped body region of a first conductivity type formed at an upper portion of the substrate composition and a doped source region of a second conductivity type formed inside the doped body region.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: August 13, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Madhur Bobde, Lingpeng Guan
  • Patent number: 8461610
    Abstract: A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located over at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, a frame located on the base board, the chip mounted on the base board, a transparent material layer located between the wavelength converting layer and a side surface of the chip so as to extend toward the wavelength converting layer, and a reflective material layer disposed at least between the frame and both side surfaces of the wavelength converting layer and the transparent material layer. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the reflective material layer as a reflector, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: June 11, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Kosaburo Ito, Toshihiro Seko, Kazuhiko Ueno, Soji Owada