Patents Examined by Charlie Y Peng
  • Patent number: 11885966
    Abstract: An optical system provides two-stage expansion of an input optical aperture for a display based on a light-guide optical element. A first expansion is achieved using two distinct sets of mutually-parallel partially-reflecting surfaces, each set handing a different part of an overall field-of-view presented to the eye. In some cases, a single image projector provides image illumination to two sets of facets that are integrated into the LOE. In other cases, two separate projectors deliver image illumination corresponding to two different parts of the field-of-view to their respective sets of facets.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: January 30, 2024
    Assignee: Lumus Ltd.
    Inventors: Eitan Ronen, Ronen Chriki, Tsion Eisenfeld
  • Patent number: 11886003
    Abstract: A core and a slab layer that are formed on a lower clad layer are provided. The lower clad layer is formed on a substrate. The core is comprised of a semiconductor and has a rectangular shape in a cross-sectional view. The slab layer is comprised of a semiconductor. The core and the slab layer have a thickness that allows only up to a secondary mode of light to be present. Further, the core and the slab layer are laminated on the lower clad layer. Further, the core and the slab layer are disposed to be optically coupled to each other.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: January 30, 2024
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Koji Takeda, Shinji Matsuo, Hidetaka Nishi
  • Patent number: 11880066
    Abstract: Structures including a waveguide core and methods of fabricating a structure including a waveguide core. The structure comprises a photonics chip including a first chip region, a second chip region, a first waveguide core in the first chip region, and a second waveguide core in the second chip region. The first chip region adjoins the second chip region along a boundary. The first waveguide core includes a first tapered section, and the second waveguide core includes a second tapered section positioned across the boundary from the first tapered section. The first tapered section has a first width dimension that increases with increasing distance from the boundary, and the second tapered section has a second width dimension that increases with increasing distance from the boundary.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: January 23, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Kevin Dezfulian, Yusheng Bian
  • Patent number: 11880078
    Abstract: An optical communication cable is provided having a cable body with an inner surface defining a passage within the cable body and a plurality of core elements within the passage. A film surrounds the plurality of core elements, wherein the film directs a radial force inward onto the plurality of core elements to restrain and hold the plurality of core elements in place.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: January 23, 2024
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Michael Emmerich, Warren Welborn McAlpine, Guenter Wuensch
  • Patent number: 11880080
    Abstract: An adjustable height optical fiber cable reel comprises a first piece having a first base plate and a first tab protruding from the first base plate, the first tab having a first opening and a second opening, a second piece having a second base plate and a second tab protruding from the second base plate, the second tab having a pin. The pin is configured to engage the first opening to lock the adjustable height reel at a first height, and to engage the second opening to lock the adjustable height reel at a second height. The adjustable height reel may also be coupled to a slack storage tray. Optical fiber enclosures may also be configured with adjustable height reels with optional slack storage trays.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: January 23, 2024
    Assignee: Clearfield, Inc.
    Inventors: John P. Hill, Joshua J. Povlitzki, Dalen Defoe
  • Patent number: 11880074
    Abstract: An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 23, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Julian S. Mullaney, Eric Emmanuel Alston, William Alan Carrico
  • Patent number: 11880079
    Abstract: An optical communication cable includes a jacket having an interior surface that defines a cable jacket internal cross-sectional area and a plurality of optical fibers, wherein less than 60% of the cable jacket internal cross-sectional area is occupied by the cross-sectional area of the plurality of optical fibers. A scaffolding structure is provided adjacent to and supporting the jacket such that when the jacket is subjected to a burn and melts, the melted jacket material bonds to the scaffolding structure rather than sloughing off.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: January 23, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Mark Hanson Bushnell, Bradley Grant Chapman, Harold Edward Hudson, II, Toua Lo
  • Patent number: 11874516
    Abstract: Embodiments of the disclosure relate to an optical fiber cable. The optical fiber cable includes a cable jacket having an inner surface and an outer surface in which the inner surface defines a central bore along a longitudinal axis of the optical fiber cable and the outer surface defines the outermost extent of the cable. The optical fiber cable also includes at least one access feature disposed in the cable jacket between the inner surface and the outer surface. Further included are a first plurality of optical fiber bundles. Each optical fiber bundle includes a second plurality of optical fiber ribbons that has a third plurality of optical fibers arranged in a planar configuration. The optical fiber cable bends uniformly in all directions transverse to the longitudinal axis of the optical fiber cable.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 16, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Jessica Ruth Abercrombie, Kevin Nicholas Ball, Xiaole Cheng, Jason Clay Lail, Rebecca Elizabeth Sistare, Ellen Anderson Stupka
  • Patent number: 11867961
    Abstract: Provided herein are embodiments of an aversive cable. The cable includes a cable core comprising a longitudinal axis, a cable jacket surrounding the cable core along the longitudinal axis, and at least one sacrificial lobe. The cable jacket has an outer surface, and each of the at least one sacrificial lobe extends longitudinally along at least a portion of cable jacket and radially outward from the outer surface of the cable jacket. The cable jacket and the at least one sacrificial lobe include an aversive material. In embodiments, the sacrificial lobes are included on a cable sheath instead of the cable jacket, and the cable sheath surrounds the cable jacket without being bonded to the cable jacket.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: January 9, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Scott M. Adams, William Welch McCollough
  • Patent number: 11867944
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: January 9, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Patent number: 11860416
    Abstract: A plurality of waveguide display substrates, each waveguide display substrate having a cylindrical portion having a diameter and a planar surface, a curved portion opposite the planar surface defining a nonlinear change in thickness across the substrate and having a maximum height D with respect to the cylindrical portion, and a wedge portion between the cylindrical portion and the curved portion defining a linear change in thickness across the substrate and having a maximum height W with respect to the cylindrical portion. A target maximum height Dt of the curved portion is 10?7 to 10?6 times the diameter, D is between about 70% and about 130% of Dt, and W is less than about 30% of Dt.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: January 2, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Samarth Bhargava, Christophe Peroz, Victor Kai Liu
  • Patent number: 11860434
    Abstract: A device and methods for cleaning an end of a fiber optic cable including a cleaning cartridge system for dispensing and usage monitoring of fiber end face cleaning fabric. The cleaning cartridge system includes a spool of cleaning fabric; an actuator that drives a fabric advance roller; a pressure sensor that detects when a fiber end face is in contact with fabric and outputs a contact-indicating signal; an internal control circuit that drives the actuator to advance the cleaning fabric in time-relation to the contact-indicating signal; and an external controller that determines proper advance of the cleaning fabric and consumption of the cleaning fabric over time. Methods of maintaining low loss physical fiber-optic connections in an automated cross-connect system use the cleaning device and methods.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: January 2, 2024
    Assignee: TELESCENT INC.
    Inventors: Keith Wayne Reynolds, Giuseppe Bondi, Anthony Stephen Kewitsch
  • Patent number: 11855119
    Abstract: A method of fabricating a photonic device includes in part, forming a multitude of metal and dielectric layers over a semiconductor substrate to form a structure. The metal layers form a continuous metal trace that characterize an etch channel. At least one of the metal layers extends towards an exterior surface of the structure such that when the structure is exposed to a metal etch, the metal etch removes the metal from the exterior surface of the structure and flows through the etch channel to fully etch the metal layers. The metal etch leaves behind a dielectric structure characterizing a photonic device. The photonic device may be a suspended rib waveguide, a suspended channel waveguide, a grating coupler, an interlayer coupler, a photodetector, a phase modulator, an edge coupler, and the like. A photonics system may include one or more of such devices.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 26, 2023
    Assignee: California Institute of Technology
    Inventors: Craig E Ives, Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Seyed Ali Hajimiri
  • Patent number: 11846822
    Abstract: The present disclosure provides an optical fiber cable (200, 300) with a compressed core (206, 306) and manufacturing method thereof. The method includes bundling a plurality of optical transmission elements (202, 302) to form a core (206, 306) of the optical fiber cable (200, 300) and compressing the core (206, 306). The method further includes extruding a sheath (212, 312) around the compressed core (206, 306), wherein the core (206, 306) is compressed to a smaller diameter by a compression tool. The compression tool has a cylindrical cavity, wherein an internal diameter of the cylindrical cavity gradually decreases from a first end to a second end of the compression tool. The core enters from the first end of the compression tool with a diameter d and exits from the second end with a diameter d-?d, such that ?d/d is greater than or equal to 0.05.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: December 19, 2023
    Assignee: Sterlite Technologies Limited
    Inventor: Vikash Shukla
  • Patent number: 11846817
    Abstract: A protective covering system for optical cables includes a plurality of links which may be coupled together to form a two-layer barrier to protect optical fiber positioned with the coupled links. Each link includes a first portion and a wider second portion. The first portion of a first link is insertable in the second portion of a second link such that the first portion of the first link and the second portion of the second link overlap one another radially. The ends of each portion include oppositely extending flanges, at least one of which is temporarily deformable when the first link is inserted into the second link. When the first and second links are secured to one another, the coupled links are free to move axially and to tilt relative to each other.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: December 19, 2023
    Assignee: DISYS, LLC
    Inventor: Channing Kearney
  • Patent number: 11841534
    Abstract: Structures including a waveguide core and methods of fabricating a structure including a waveguide core. The structure comprises a substrate, a waveguide core, and a grating disposed in a vertical direction between the waveguide core and the substrate. The grating includes a first plurality of layers and a second plurality of layers that alternate in the vertical direction with the first plurality of layers. The first plurality of layers comprise a first material having a first refractive index, and the second plurality of layers comprise a second material having a second refractive index that is greater than the first refractive index.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: December 12, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Adam Rosenfeld, Yusheng Bian, Francis Afzal, Bob Mulfinger
  • Patent number: 11835778
    Abstract: An optical fiber cable production method includes: feeding a core including optical fibers; winding a reinforcing wrap around the core and forming an overlapping portion in which end portions of the reinforcing wrap overlap each other at a portion of the reinforcing wrap in a circumferential direction; and performing extrusion molding of a sheath on an outside of the reinforcing wrap. The overlapping portion extends in a longitudinal direction of the optical fibers. In the performing extrusion molding, a resin that forms the sheath is inserted into a portion of the overlapping portion.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: December 5, 2023
    Assignee: Fujikura Ltd.
    Inventors: Tomoaki Kaji, Akira Namazue, Ken Osato
  • Patent number: 11835761
    Abstract: The invention provides a planar optical waveguide circuit capable of preventing part of the input signal light that has not been combined in the waveguide and propagates as leaked light from interfering with the output signal. A planar optical waveguide circuit having an optical waveguide embedded in a cladding layer includes: a plurality of parallel output optical waveguides configured to emit light from a same end face; a groove having a reflective interface formed at an angle of +45 degrees relative to the output optical waveguides and configured to reflect leaked light propagating in the cladding layer; and a groove having a reflective interface formed at an angle of ?45 degrees, the reflective interface formed at an angle of +45 degrees, the output optical waveguide, and the reflective interface formed at ?45 degrees being arranged repeatedly in that order.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: December 5, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Osamu Moriwaki, Kenya Suzuki, Takashi Go, Manabu Oguma, Yuichiro Ikuma
  • Patent number: 11836609
    Abstract: Utilizing the principles of wavelength-dependent evanescent wave coupling in closely-spaced optical waveguides, along with optical resonators, a method for creating a neural network out of entirely electro-optical components is discussed. Optical resonators, which can store energy as standing waves or whispering gallery modes, act as neurons. Waveguides integrated onto a chip act as dendrites or connectomes, with coupling between them simulating the analog exchange of signals in brains. Additional electro-optic controls can be utilized, such as conductive plates utilizing the electro-optic effect to change the refractive indices of the optics and coupling coefficients based on electrical signals from outside stimuli.
    Type: Grant
    Filed: December 5, 2020
    Date of Patent: December 5, 2023
    Inventor: Cody William Lamb
  • Patent number: 11815716
    Abstract: An arrayed waveguide grating device includes an input coupler configured to receive a light signal and split the light signal into a plurality of output light signals. The device also includes a plurality of waveguides optically connected to the input coupler, each waveguide having a plurality of waveguide portions having respective sensitivities to variance in one or more parameters associated with operating of the optical arrayed grating device. Lengths of the respective portions are determined such that each waveguide applies a respective phase shift to the output light signal that propagates through the waveguide and the plurality of waveguides have at least substantially same change in phase shift with respective changes in the one or more parameters associated with operation of the device. An output coupler is optically connected to the plurality of waveguides to map respective light signals output from the plurality of waveguides to respective focal positions.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: November 14, 2023
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventor: Sean P. Anderson