Patents Examined by Choon P. Koh
  • Patent number: 6416548
    Abstract: This invention provides an antimicrobial annuloplasty rings, and methods for making the same, wherein the annuloplasty rings have a desired degree of initial rigidity to facilitate ease of handling during implantation but which becomes flexible some time after implantation. The annuloplasty ring contains a relatively rigid insert enclosed by a fabric sheath, the insert being at least partly comprised of a biodegradable material. Following surgical implantation of the annuloplasty ring, the rigid insert component of the ring, upon exposure to blood and/or other physiological fluids, undergoes a controlled biodegradation which decreases its rigidity, thereby increasing the flexibility of the implanted annuloplasty ring. Furthermore, at least some portion of the annuloplasty ring of the invention has incorporated therein one or more antimicrobial agents in a manner which reduces the likelihood of device infection following implantation.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: July 9, 2002
    Assignee: Sulzer Carbomedics Inc.
    Inventors: Joseph A. Chinn, R. Michael Casanova
  • Patent number: 6409764
    Abstract: There are numerous medical situations involving deficiencies of living bone or periodontal tissue and where increase of living bone or periodontal tissue mass is desired. Methods are described wherein a configured, shell-like device that is capable of being penetrated by living cells and tissues, is implanted into the body of a mammal in such a way as to establish a space, the space being at least partly, bounded by the device. The configuration of the device is such that the configuration of the established space is essentially the same as the configuration of living bone or periodontal tissue that is desired for treatment of the tissue deficiency. At least one protein from the Transforming Growth Factor-Beta Superfamily of proteins is placed within the established space for the purpose of stimulating the growth of living bone or periodontal tissue within the established space. A kit for the generation of living bone or periodontal tissue, comprised of the components mentioned above, is also disclosed.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: June 25, 2002
    Inventors: Charles F. White, Charles Flynn, Alonzo D. Cook, William R. Hardwick, Ulf M. E. Wikesjo, Robert C. Thomson
  • Patent number: 6402783
    Abstract: The invention provides an article of manufacture comprising a substantially non-immunogenic ligament or tendon xenograft for implantation into humans. The invention further provides a method for preparing a ligament xenograft by removing at least a portion of an ligament from a non-human animal to provide a xenograft; washing the xenograft in saline and alcohol; subjecting the xenograft to at least one treatment selected from the group consisting of exposure to ultraviolet radiation, immersion in alcohol, ozonation, freeze/thaw cycling, and optionally chemical crosslinking. In addition to or in lieu of the above treatments, the methods include a cellular disruption treatment and glycosidase digestion of carbohydrate moieties of the xenograft followed by treatment of carbohydrate moieties of the xenograft with capping molecules. The invention also provides articles of manufacture produced by one or more of the above-identified methods of the invention.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: June 11, 2002
    Assignee: CrossCart, Inc.
    Inventor: Kevin R. Stone
  • Patent number: 6398810
    Abstract: A breast form receivable in the cup of a brassiere includes a breathable padded casing selectively filled with a flowable aggregate so as to substantially and comfortably conform to the chest cavity of a wearer, thereby being responsive to the movements of the wearer. The breathable padded casing includes a plurality of soft and supple composite panels joined together so as to loosely confine the flowable aggregate and thereby provide a soft but firm appearance for the breast form.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: June 4, 2002
    Inventor: Evelyn M. Surprise
  • Patent number: 6395029
    Abstract: The invention relates to compositions and methods for delivering a polyionic bioactive composition such as a nucleic acid to a tissue of an animal. The compositions of the invention include compositions which comprise a matrix comprising the polyionic bioactive agent and wherein at least most of the polyionic bioactive agent at the exterior portion of the matrix is present in a condensed form. The invention also includes methods of making such compositions, including particles, devices, bulk materials, and other objects which comprise, consist of, or are coated with such compositions. Methods of delivering a polyionic bioactive agent to an animal tissue are also described. The invention further includes a method of storing a nucleic acid.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: May 28, 2002
    Assignee: The Children's Hospital of Philadelphia
    Inventor: Robert J. Levy
  • Patent number: 6390098
    Abstract: In order to bypass a restriction in a parent vessel, a first site in a branch vessel branching from the aorta is accessed intraluminally. An occlusion is formed at the first site, and the aperture is formed in the branching vessel, intraluminally, proximal of the first site. An aperture is formed in the parent vessel distal of the restriction, and a lumen is formed which communicates between the branching vessel proximal of the occlusion, and the parent vessel distal of the restriction.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: May 21, 2002
    Assignee: SciMed Life Systems, Inc.
    Inventors: Daniel M. LaFontaine, Roger N. Hastings, Charles L. Euteneuer, Lixiao Wang
  • Patent number: 6375676
    Abstract: The invention is directed to a self-expanding stent for implantation into a body lumen, such as an artery. The stent consists of a plurality of radially expandable cylindrical elements generally aligned on a common longitudinal stent axis and interconnected by a plurality of interconnecting members placed on the stent in a collinear arrangement such as to create at least one continuous spine which extends along the length of the stent. The invention is also directed to a stent delivery system for implantation of a stent in a vessel which includes an outer tubular member having a restraining sheath and an inner tubular member having a distal end which has a compressed stent mounted thereto. The proximal end of the inner tubular member is connected to a housing assembly which prevents the inner tubular member from moving when the outer tubular member is retracted to deploy the stent.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: April 23, 2002
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Daniel L. Cox
  • Patent number: 6364905
    Abstract: A bioprosthetic heart valve is disclosed. In a first aspect of the invention, a prosthetic heart valve comprises three mammalian heart valve leaflets, each valve leaflet including a full root length of tissue, the valve leaflets being affixed to one another to define a fluid flow passage, the fluid flow through which may be governed by the valve leaflets. In a second aspect the heart valve comprises a plurality of heart valve leaflets affixed to one another to define a fluid flow passage, the fluid flow through which may be governed by the valve leaflets; and a permanent trimming guide on at least one of the plurality of valve leaflets. In yet a third aspect of the invention, a bioprosthetic heart valve comprises a plurality of assembled parts, wherein the assembled parts are sutured together by hidden and locking stitches.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: April 2, 2002
    Assignee: Sulzer Carbomedics Inc.
    Inventors: Charles L. Simpson, Brian K. McIlroy, Lisa G. O'Connor, Ivan Casagrande, Stephen Westaby
  • Patent number: 6360750
    Abstract: Devices are currently implanted in patients to treat pain and other conditions including incontinence by delivering stimulants to the nervous system. Surgical methods are improved for implanting the devices. The soft tissues of the body are dilated above the site of device implantation, for example, above the sacrum, to create an annulus of dilated soft tissues. The tissues are dilated by introducing into the soft tissue sequentially larger cannulated dilating devices. A tubular retractor is then passed over the largest introduced dilating device and at least a number of the dilating devices are retracted. This establishes a tubular device insertion corridor through the dilated soft tissues to the site of implantation, for example, the foramen of the sacrum. The device to be implanted, such as an electrical lead, is then inserted through the corridor. The device is tested in situ. Finally, such other method steps are performed, including closing the corridor, as implantation requires.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: March 26, 2002
    Assignee: Medtronic, Inc.
    Inventors: Martin Theodore Gerber, Michael C. Sherman
  • Patent number: 6361567
    Abstract: The present invention provides a process of forming an antimicrobial coating on a surface of a medical implant, the coating comprising an antimicrobially effective amount of antimicrobial metal atoms incorporated into a coating of amorphous carbonaceous material.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: March 26, 2002
    Assignee: Southwest Research Institute
    Inventor: Geoffrey Dearnaley
  • Patent number: 6361557
    Abstract: Improved endoluminal prostheses and methods for their use, having discrete position indicating elements which facilitate the orienting and deploying of the prostheses within body lumens. The endoluminal prostheses may include endovascular prostheses, often formed as stent-grafts having a flexible tubular liner or “graft.” The position indicating elements may include an improved radiopaque image marker to be applied to the graft, before the graft is deployed particularly within branching blood vessels for the treatment of abdominal and other aneurysms. The marker is in the form of a flat metal blank resembling a circular plate or “button.” The disk may be fastened or secured on to the graft using a pair of fastening shanks or tangs which extend parallel to each other outward from a surface of the plate.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: March 26, 2002
    Assignee: Medtronic AVE, Inc.
    Inventors: Darin C. Gittings, Denise M. DeMarais
  • Patent number: 6361519
    Abstract: A method and apparatus for performing coronary artery bypass surgery establishes a channel leading directly from a chamber of a heart into a coronary artery. The coronary artery bypass procedure may be performed with or without cardiopulmonary bypass.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: March 26, 2002
    Assignee: HeartStent Corporation
    Inventors: Mark B. Knudson, William L. Giese
  • Patent number: 6358275
    Abstract: Vascular grafts, and methods for making the same, are provided. The vascular grafts comprise a graft tissue derived from a biological source that is enclosed within an external synthetic sleeve. The synthetic sleeve has an extended length that is greater than the length of the graft tissue. However, the sleeve is longitudinally compressed such that it has a resting length substantially similar to the length of the graft tissue.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: March 19, 2002
    Assignee: Sulzer Carbomedics Inc.
    Inventors: Brian K. Mcllroy, Tim Ashton, Roshan Maini, Richard E. Phillips
  • Patent number: 6355055
    Abstract: An endovascular support device adapted for local delivery of a therapeutic agent and for minimizing the rate of restinosis having a cylindrical support body with an inside surface and an opposite outside surface, and at least one layer of pericardial tissue covering at least a portion of at least a selected one of the inside surface or the outside surface of the cylindrical support body. At least one therapeutic agent is disposed on a portion of the support device.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: March 12, 2002
    Assignee: Emory University
    Inventors: Ron Waksman, Spencer B. King, III, Neal A. Scott
  • Patent number: 6355061
    Abstract: An intraluminal grafting system having a balloon catheter assembly, a capsule catheter assembly and capsule jacket assembly is used for deploying in the vessel of an animal body a bifurcated graft having a plurality of attachment systems. The deployment catheters contain an ipsilateral capsule assembly, a contralateral capsule assembly and a distal capsule assembly, wherein the attachment systems of the bifurcated graft are disposed within the three capsule assemblies. A removable sheath of the capsule jacket assembly covers the bifurcated graft and capsule assemblies to provide a smooth transition along the length of the deployment catheters. The bifurcated graft is comprised of a main tubular member and two tubular legs, having attachment systems with wall engaging members secured to the superior end of the main tubular member and the inferior ends of the tubular legs. An inflatable membrane configured on the balloon catheter is used to firmly implant the attachment systems within the vessel.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: March 12, 2002
    Assignee: Endovascular Technologies, Inc.
    Inventors: Dinah B. Quiachon, Alec A. Piplani, Richard S. Williams, Steve G. Baker, Peter K. Johansson
  • Patent number: 6352555
    Abstract: Disclosed herein is a method for implanting cells onto a prosthesis, including the steps of: (a) providing a prosthesis including a porous tube, where at least 25% of the pores on the inner surface of the tube have diameters of more than about 40 &mgr;m, at least 25% of the pores on the outer surface of the tube have diameters of less than about 30 &mgr;m, and the tube includes a substantially continuous layer of a biocompatible material; (b) contacting the prosthesis with a suspension of cells; and (c) providing a pressure differential between the inner surface and the outer surface, whereby the cells are retained in the pores of the inner surface. Also disclosed herein are methods for culturing cells for implantation.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: March 5, 2002
    Assignee: The Brigham and Womens Hospital, Inc.
    Inventors: Victor J. Dzau, Richard E. Pratt, Michael J. Mann, Afshin Ehsan, Daniel P. Griese
  • Patent number: 6350248
    Abstract: A method and apparatus for performing coronary artery bypass surgery establishes a channel leading directly from a chamber of a heart into a coronary artery. The coronary artery bypass procedure may be performed with or without cardiopulmonary bypass.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: February 26, 2002
    Assignee: HeartStent Corporation
    Inventors: Mark B. Knudson, William L. Giese
  • Patent number: 6334446
    Abstract: A procedure for treating urinary stress incontinence by using bone anchors, whether screw or staple type, with or without suture, inserted pervaginally for use with a sling material for supporting the bladder neck and/or proximal uretha.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: January 1, 2002
    Assignee: American Medical Systems, Inc.
    Inventor: Mordechay Beyar
  • Patent number: 6325828
    Abstract: A knee prosthesis which more accurately reproduces the rollback of natural knee movement and, thus, reduces wear on the tibial component. The knee prosthesis includes a femoral component with two cams, the first located between the posterior condylar sections and the second located towards the anterior end of the condylar sections with a slot surface therebetween. The tibial component includes a spine which engages each cam as it rotates along the femoral component and the slot surface during flexion and extension.
    Type: Grant
    Filed: December 2, 1997
    Date of Patent: December 4, 2001
    Assignee: Rose Biomedical Research
    Inventors: Douglas A. Dennis, Richard D. Komistek
  • Patent number: 6322587
    Abstract: An intraluminal grafting system having a balloon catheter assembly, a capsule catheter assembly and capsule jacket assembly is used for deploying in the vessel of an animal body a bifurcated graft having a plurality of attachment systems. The deployment catheters contain an ipsilateral capsule assembly, a contralateral capsule assembly and a distal capsule assembly, wherein the attachment systems of the bifurcated graft are disposed within the three capsule assemblies. A removable sheath of the capsule jacket assembly covers the bifurcated graft and capsule assemblies to provide a smooth transition along the length of the deployment catheters. The bifurcated graft is comprised of a main tubular member and two tubular legs, having attachment systems with wall engaging members secured to the superior end of the main tubular member and the inferior ends of the tubular legs. An inflatable membrane configured on the balloon catheter is used to firmly implant the attachment systems within the vessel.
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: November 27, 2001
    Assignee: Endovascular Technologies, Inc.
    Inventors: Dinah B. Quiachon, Alec A. Piplani, Richard S. Williams, Steve G. Baker, Peter K. Johansson