Patents Examined by Chris L Chin
  • Patent number: 8637326
    Abstract: Detection of detection target substances at a sensor portion is expedited and the efficiency thereof is improved in biological substance analysis, to enable accelerated analysis with high sensitivity. A biological substance analyzing cell equipped with a reaction chamber having a sample supply space, an acoustic matching layer which is provided at a predetermined region of an inner wall of the reaction chamber that faces another inner wall, and a sensor portion provided within the reaction chamber is employed. Ultrasonic waves are emitted such that a standing wave are generated between the acoustic matching layer and the inner wall of the reaction chamber that faces the acoustic matching layer. The detection target substance is concentrated by the capturing forces of the standing waves, and the concentrated detection target substance is detected at the sensor portion.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: January 28, 2014
    Assignee: Fujifilm Corporation
    Inventors: Kazuyoshi Horii, Ryuichi Nakayama, Yasutoshi Hirabayashi
  • Patent number: 8633013
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: January 21, 2014
    Assignee: Clondiag GmbH
    Inventors: Thomas Kaiser, Klaus-Peter Möbius, Torsten Schulz, Thomas Uhlig, Alexander Von Schenk Zu Schweinsberg, Eugen Ermantraut, Jens Tuchscheerer
  • Patent number: 8628980
    Abstract: Labels and methods of producing labels for use in clinical, analytical and pharmaceutical development assays are provided. Labels may comprise shape-encoded particles which may be coupled to ligands such as DNA, RNA and antibodies, where different shapes are used to identify which ligand(s) are present. Labels may also comprise reflectors, including retroreflectors and retroreflectors susceptible to analyte-dependent assembly for efficient homogeneous assays.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 14, 2014
    Inventors: Richard C. Willson, Raul Ruchhoedft
  • Patent number: 8628949
    Abstract: An apparatus for producing a probe carrier in which ambient humidity for a plurality of nozzles of a liquid ejection device for ejecting droplets of solutions containing probes to the surface of a carrier is controlled to 50% or more, preferably 60% or more. A part of solution supply passages to the plurality of nozzles is constructed from gas permeable membranes permitting gas-liquid separation under reduced pressure. These gas permeable membrane portions are gathered and altogether placed under reduced pressure to remove air bubbles from the respective solutions supplied to the plural nozzles and decrease the amount of a dissolved gas, which causes air bubbles to be generated.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: January 14, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Makoto Kameyama, Nobuyuki Okamura, Tadashi Okamoto
  • Patent number: 8614101
    Abstract: Devices and methods incorporate lysis agents into a point-of-care testing device. The sample is loaded, and then the sample travels until it encounters a lysis agent. The lysis agent is preferably pre-loaded onto the collection device. In a preferred embodiment, the initially lysis agent is localized between the sample application zone and the conjugate zone. The lysis agent is preferably soluble or miscible in the sample transport liquid, and the lysis agent is solubilized and activated upon contact with the sample transport liquid. The sample transport liquid then contains both lysis agent in solution or suspension and sample components in suspension. Any lysis-susceptible components in a sample, then being exposed in suspension to the lysis agent, are themselves lysed in situ. The running buffer then carries the analyte, including any lysis-freed components, to the detection zone.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 24, 2013
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Robert W. VanDine, Uma Mahesh Babu, Robert P. Sambursky
  • Patent number: 8614102
    Abstract: Disclosed is a test device and a method for qualitatively and/or quantitatively measuring the concentration of an analyte in a biological fluid sample. The test device includes a housing defining a sample port, a test well containing a stirrer and a conjugate, and a test strip disposed within the housing. The test well is also defined by being located between the sample port and the test strip. Fluid flows from the test well onto the test strip, which has a trapping zone which binds the analyte and allows for its detection. A control zone may also be included. The test device is generally adapted to use a sandwich assay. Also disclosed is a system comprising the test device and a signal sensing device; and a method for using the test device.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: December 24, 2013
    Assignee: Instant Medical Diagnostics, LLC
    Inventors: Alan R. Day, Allan M. Weinstein, Bryan C. Christiansen
  • Patent number: 8609355
    Abstract: Methods, devices, and kits are provided herein for the accurate and rapid detection of disease causing microbes in a sample by the detection of microbial components of which correlate to the presence of the microbe. Kits include a first binding agent operatively coupled to an immobilized support; and a second binding agent operatively coupled to one or more pH indicating moieties wherein the first and second binding agents bind with sufficient specificity to the microbial component to permit detection of that component which correlates to the presence of the microbe in the sample.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 17, 2013
    Assignee: Indicator Systems International, Inc.
    Inventors: Gerald F. Swiss, Laurie B. F. Stellman
  • Patent number: 8603835
    Abstract: Test cells have a first sorbent strip with a sample receiving location and defining a first migration path, a distinct second sorbent strip which receives buffer solution and at least partially defines a second migration path distinct from and elongated relative to the first migration path, conjugate supported by the second strip, a test site located at a junction of the first and second strips and having an immobilized ligand-binding mechanism, and a divider which directs a first amount of the buffer to the first strip to move the sample to the test site and a second amount to the second strip to move the conjugate to the test site. The first and second migration paths have first and second lengths chosen so that ligand in the sample reaches the test site and binds to the immobilized ligand-binding mechanism prior to the conjugate reaching the test site.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 10, 2013
    Assignee: Chembio Diagnostic Systems, Inc.
    Inventor: Javanbakhsh Esfandiari
  • Patent number: 8592224
    Abstract: A biochip for diagnostic purposes comprises a sample carrier made of a solid matrix, on the surface of said sample carrier is bound the sample material to be analysed which originates from a biological organism.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: November 26, 2013
    Assignee: Bioref GmbH
    Inventor: Hans-Jurgen Staab
  • Patent number: 8580578
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: November 12, 2013
    Assignee: X-Body, Inc.
    Inventors: Brian T. Cunningham, Jane Pepper, Bo Lin, Peter Li, Homer Pien, Jean Qiu
  • Patent number: 8569075
    Abstract: A method for using a multi-welled micro-plate in radioimmunoassay (“RIA”) is disclosed to improve the performance of RIA. At first, there is provided a multi-welled micro-plate that can be dismantled and divided into multiple wells. Then, samples are filled into the wells of the multi-welled micro-plate for incubation. Washing, tracer-adding, incubation, and washing are executed. At a final step, the multi-welled micro-plate is separated into wells, and each of to the wells is put into a test tube for gamma counting by a gamma counter.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: October 29, 2013
    Assignee: Atomic Energy Council Energy—Institute of Nuclear Energy Research
    Inventors: Meng-Jun Fu, Ping-Hung Yu, Chin-Yan Tsai, Kuan-Yin Chen, Chia-Chieh Chen
  • Patent number: 8568966
    Abstract: An object of the present invention is to provide a technique that can adjust a molecular density of the film of functional molecules (e.g. DNA molecules), which is utilized for biochips such as DNA chip, to a desired degree efficiently and easily. The method for producing a molecular film with an adjusted density according to the present invention includes forming a molecular film and adjusting a molecular density. In the forming a molecular film, a molecular film composed of molecules is formed on a conductive substrate, wherein the molecule includes a region capable of binding to the conductive substrate at least in a portion thereof. In the density adjusting, a molecular density of the molecular film is adjusted by desorbing a part of the molecules which make up the molecular film from the conductive substrate.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: October 29, 2013
    Assignee: Fujitsu Limited
    Inventors: Kenji Arinaga, Ulrich Rant, Erika Pringsheim, Jelena Knezevic
  • Patent number: 8563328
    Abstract: A method for biosensing that includes passing, via convective flow, a sample believed to contain one or more target biomarkers through a microfluidic channel and over the surface of an optical waveguide that has been prepared to bind the one or more target biomarkers, and sensing for an emission output from the optical waveguide at a wavelength that is characteristic of the binding of the target biomarker. A biosensor device that includes a module defining at least one microfluidic channel, an optical waveguide exposed along at least a portion of its length to fluid flow within the microfluidic channel, where a surface of the optical waveguide being prepared to bind a target biomarker, and an excitation source to couple an excitation wavelength of light into the optical waveguide. The device also includes a sensor for detecting emission light from the optical waveguide at an emission wavelength characteristic of binding of the target biomarker.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: October 22, 2013
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Kyung Aih Kang, Chong H. Ahn
  • Patent number: 8563329
    Abstract: Modified branched polymers are combined with bioactive agents which are one member of a binding pair for use in an assay.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 22, 2013
    Assignee: ANP Technologies, Inc.
    Inventors: Ray Yin, Dujie Qin, Jing Pan
  • Patent number: 8557609
    Abstract: A method employing gel electrophoresis and optical imaging techniques to measure the amount of biomaterial that attaches to specified locations on a detector slide such as a bioarray or biochip.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: October 15, 2013
    Assignee: Maven Biotechnologies, LLC
    Inventors: Shane Dultz, David Ralin, William Rassman
  • Patent number: 8557604
    Abstract: A lateral flow, membrane-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes phosphorescence to detect the signals generated by excited phosphorescent labels. The labels may have a long emission lifetime so that background interference from many sources, such as scattered light and autofluorescence, is practically eliminated during detection. In addition, the phosphorescent labels may be encapsulated within particles to shield the labels from quenchers, such as oxygen or water, which might disrupt the phosphorescent signal.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 15, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: Xuedong Song
  • Patent number: 8551716
    Abstract: The invention provides methods of detecting a change in cell growth patterns, methods of screening many different antibodies in one receptacle, and methods of detecting specific binding of an antibody to a protein or cell, wherein the antibody is in a mixture of many different antibodies.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: October 8, 2013
    Assignee: X-Body, Inc.
    Inventors: Christine C. Genick, Lance G. Laing, Peter Li, Timothy F. Smith, Lara Madison, Bo Lin
  • Patent number: 8524507
    Abstract: A method is provided for detecting a target molecule in a biological sample. One step of the method includes immobilizing the biological sample on a membrane. Next, the membrane-bound biological sample is contacted with at least one detection moiety. The membrane-bound biological sample is then separately mated with a substrate and the target molecule detected. At least one step of the method is performed under positive pressure or a vacuum.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: September 3, 2013
    Assignee: The Cleveland Clinic Foundation
    Inventor: David J. Kennedy
  • Patent number: 8518709
    Abstract: In a method for regenerating a biosensor, a biosensor is prepared having a substrate surface on which at least one receptor is immobilized. At least one ligand that is binding specific to the receptor is bound to the receptor, said ligand, together with the receptor, forming a ligand-receptor complex. To regenerate the biosensor, the ligand-receptor complex is brought into contact with an enzyme. The enzyme is selected so that it catalyzes the ligand into fragments. The enzyme is inert with respect to the receptor.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: August 27, 2013
    Assignee: Endress+Hauser Conducta Gesellschaft fuer Mess-und Regeltechnik mbH+Co. KG
    Inventors: Sonja Bednar, Johannes Baader, Holger Klapproth, Ingo Freund
  • Patent number: 8507212
    Abstract: A process for treating biological targets in a fluid of a biological organism, including introducing a fluid comprising a biological target to an assembly comprising an inlet connected to receive the fluid and an outlet connected to pass the fluid from the assembly, wherein the assembly comprises a flow chamber for conveying a flow of the fluid, and a capture zone comprising a target-specific binding agent, wherein during flow of the fluid through the flow chamber, the biological target undergoes flux rolling along the target-specific binding agent.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: August 13, 2013
    Assignee: Biomed Solutions LLC
    Inventors: Patrick R. Connelly, Jeffrey L. Helfer, Andrew W. Custer, Michael B. Kim