Patents Examined by Chris L Chin
  • Patent number: 8497136
    Abstract: A device and method for detecting the presence of hemoglobin in a biological sample, more particularly, the presence of blood in a fecal sample as an indicator of upper or lower gastrointestinal tract bleeding.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: July 30, 2013
    Assignee: Quest Diagnostics Investments Incorporated
    Inventor: Howard Milne Chandler
  • Patent number: 8497137
    Abstract: Capture particles for harvesting analytes from solution and methods for using them are described. The capture particles are made up of a polymeric matrix having pore size that allows for the analytes to enter the capture particles. The pore size of the capture particles are changeable upon application of a stimulus to the particles, allowing the pore size of the particles to be changed so that analytes of interest remain sequestered inside the particles. The polymeric matrix of the capture particles are made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. The capture particles may be used to isolate and identify analytes present in a mixture. They may also be used to protect analytes which are typically subject to degradation upon harvesting and to concentrate low an analyte in low abundance in a fluid.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 30, 2013
    Inventors: Alessandra Luchini, Lance Liotta, Emanuel Petricoin, Barney Bishop, Caterina Longo, Virginia Espina, Alexis Patanarut
  • Patent number: 8497135
    Abstract: Oral, topical and injectable contraceptives, which are based on sperm protein 22 kDa (SP22) polypeptides and antibodies and infertility diagnostics and kits are provided.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: July 30, 2013
    Assignee: U.S. Environmental Protection Agency
    Inventor: Gary R. Klinefelter
  • Patent number: 8492139
    Abstract: This invention relates to a detection system for measuring a fluorescent signal in a fluorescent assay. The system comprises a probe having a small sensing surface bound with a fluorescent label, and a light source and a detector both mounted at the proximal side of the sensing surface of the substrate. The invention also relates to a method for detecting an analyte in a liquid sample using a probe tip having a small surface area (?5 mm) and a high molecular weight polymer (?1 MD) having multiple binding molecules and multiple fluorescent labels. The binding reaction is accelerated by flowing the reaction solutions laterally and moving the probe tip up and down in the reaction vessels. The invention furthers relates to a fluorescent labeling composition comprising a cross-linked FICOLL® molecule having a plurality of binding molecules and a plurality of fluorescent labels.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 23, 2013
    Assignee: Access Medical Systems, Ltd.
    Inventors: Hong Tan, Robert F. Zuk, Yushan Tan, Erhua Cao, Min Xia, Jun Chen
  • Patent number: 8486717
    Abstract: The present invention relates to novel lateral flow devices using two dimensional features, preferably, uniform two dimensional test and control features, and the methods for detecting an analyte using the lateral flow devices, and processes for making the lateral flow devices.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 16, 2013
    Assignee: Symbolics, LLC
    Inventors: Brendan O'Farrell, Thomas C. Tisone
  • Patent number: 8481335
    Abstract: The invention is directed to a sensor system including at least one sensor and target specific receptors bound substrates for purposes of enhancing detection sensitivity. Optionally, the sensor system may include quantum dots for independently verifying the presence of a target molecule or compound. The sensor system may be particularly beneficial in the field of medical diagnostics, bio-defense, food safety, water safety and general chemical detection.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 9, 2013
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih
  • Patent number: 8476007
    Abstract: A biosensor having an optical fiber having at least one curved portion configured to enhance penetration of evanescent waves; and one or more nanoparticles associated with the optical fiber, and configured to enhance localized surface plasmon resonance.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 2, 2013
    Assignee: Indian Institute of Technology Bombay
    Inventors: Vemulakonda Venkata Raghavendra Sai, Soumyo Mukherji, Tapanendu Kundu
  • Patent number: 8476082
    Abstract: Devices and methods for the detection of target molecules are disclosed. Devices and methods for detecting food-borne target molecules are also disclosed.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: July 2, 2013
    Assignee: Invisible Sentinel, Inc.
    Inventors: Nicholas A. Siciliano, Martin Joseph Bouliane
  • Patent number: 8470610
    Abstract: Analytes in a sample are resolved by retentate chromatography in a procedure involving adsorbing the analytes on a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 25, 2013
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 8470608
    Abstract: The sensitivity of visually read lateral flow immunoassay tests is enhanced by adding a small quantity of fluorescing dye or fluorescing latex bead conjugates to the initial conjugate material. When the visible spectrum test line is visibly present, the test result is observed and recorded. However, in the case where the result is indeterminate, a light of an appropriate spectrum, such as a UV, visible, or infrared spectrum, is cast on the test line to excite and fluoresce the fluorescing latex beads which are bound in the test line in true positive tests to enhance the visible color at the test line.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: June 25, 2013
    Assignee: Rapid Pathogen Screening, Inc
    Inventors: Uma Mahesh Babu, Robert W. VanDine, Robert P. Sambursky, Ganga Kanaujia, Richard Rivas, Jr.
  • Patent number: 8465968
    Abstract: The present invention relates to a label-free biosensor system, a method for manufacturing said label-free biosensor system, its use for detecting biochemical reactions and/or bindings, enzymatic reactions, nucleic acid hybridizations, protein-protein interactions and protein-ligand interactions, as well as an assay method for detecting and/or quantifying an analyte of interest in a biological sample which comprises detecting the Recognition Induced Birefringence (RIB) generated in the presence as opposed to the absence of said analyte by bringing said sample into contact with said label-free biosensor system.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 18, 2013
    Assignee: DWI an der RWTH Aachen e.V.
    Inventors: Jürgen Groll, Martin Möller, Matthias Eberhardt
  • Patent number: 8460863
    Abstract: A method of preparing a dry stick test device for determining an analyte in a milk sample by chemical assay. At least one reagent pad is provided by impregnating a first porous material with an aqueous solution including a reagent capable of reacting with the analyte, a derivative of the analyte or an indicator compound for the analyte to provide a detectable signal when in a moistened state. The reagent pad is dried. A development pad is provided by impregnating a second porous material with an aqueous solution including at least one controlling compound which, when in a moistened state, is capable of providing a condition required for the reagent to react with the analyte to provide the detectable signal. The impregnated second porous material is dried. The first porous material is immobilized with the second porous material, on a solid support, to obtain the dry stick test device.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: June 11, 2013
    Assignee: Lattec I/S
    Inventor: Lars Nygaard
  • Patent number: 8455263
    Abstract: The present invention relates to an assay device and a method for using such for the quantitative determination of an analyte, based on a test strip, which contains a porous test membrane allowing for capillary flow of the analyte and complexes of the analyte, a porous upstream membrane in fluid connection with the test membrane and a porous downstream membrane in fluid connection with the test membrane, wherein the test membrane contains a test site having immobilized thereon a ligand capable of reacting with the analyte and binding such to the test site, and two standard band sites having immobilized thereon known high and low concentrations of a calibrator agent capable of reacting with a label conjugate and binding such to the standard sites, wherein the upstream membrane has a site for the application of a sample to be analyzed, and has a site downstream from the sample application site for depositing label conjugates capable of reacting with the analyte and label conjugates capable of reacting with the
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 4, 2013
    Inventor: Jin Po Lee
  • Patent number: 8450104
    Abstract: Apparatus for detecting biological or chemical components in liquid or gas is based on measuring changes of the sensor layer thickness due to binding reactions. A plate or a gap with two surfaces of a solid optical material is used as the sensor layer. The surfaces are located at a distance of more than 10 ?m, which allows pumping liquids through the gap at moderate pressure drops and investigating large biological objects (e.g., cells), or employment of affordable plates that are rigid enough without any substrate. The indicated thickness of the plate or the gap permits using of the superluminescent diodes as light sources, because it allows recording within their narrow spectrum a sufficient number of interference maxima and minima for precise registration of molecular binding reactions, which lead to much higher sensitivity of the apparatus as compared with apparatus based on thin-film sensor layers.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 28, 2013
    Inventors: Petr Ivanovich Nikitin, Boris Georgievich Gorshkov
  • Patent number: 8445293
    Abstract: The present invention includes methods and devices for preventing interfering substances from affecting the accuracy of a lateral flow immunoassay. In preferred embodiments, a test strip includes a capturing zone that includes at least one mobile capturing reagent that separates at least one interfering substance from the analyte. The capturing zone is preferably located upstream of the sample application zone. In some embodiments, the reagent/conjugate zone is also located upstream of the sample application zone. The capturing zone may be located upstream, downstream, or overlapping with the reagent/conjugate zone in these embodiments. In other preferred embodiments, one or more mobile capturing reagents are included in the elution medium/running buffer. In yet other embodiments, the capturing reagent is incorporated into a sample collection device of a sample collection system, preferably separate from the chromatographic test strip. A lysis zone is also included in some preferred embodiments.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 21, 2013
    Assignee: Rapid Pathogen Screening, Inc.
    Inventors: Uma Mahesh Babu, Franz Aberl, Marcus Scheibenzuber, Robert P. Sambursky, Robert W. VanDine, Jose S. Sambursky
  • Patent number: 8440468
    Abstract: Provided is a method for amplifying a frequency variation of a detected signal in a biosensor that is used for detecting a biomolecule by measuring a change in frequency of an oscillating signal, the change being caused by pressure a biomolecule applies to a piezoelectric substance. The method for amplifying a frequency variation of a detected signal comprises the steps of: (a) applying a sample to a probe being fixed to an upper portion of a substrate of the biosensor to allow a biomolecule in the sample to be bound to the probe; (b) applying protein tagged with a metal particle to the biosensor to allow the protein and the biomolecule to be bound with each other; and (c) applying a metal enhancer to the biosensor to allow the metal enhancer to be bound to the metal particle having been bound to the protein.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 14, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun Joo Lee, Soo Suk Lee
  • Patent number: 8426152
    Abstract: The present invention provides a method of detecting changes in the refractive index at the surface of a localized surface plasmon resonance (LSPR) detection system. The method includes generating an insoluble product from an enzymatic substrate using an immobilized enzyme, wherein the insoluble product accumulates at a LSPR supporting surface. The method also includes detecting changes in the reflected or transmitted light of the surface arising from the presence of the insoluble product using LSPR.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 23, 2013
    Assignee: LamdaGen Corporation
    Inventors: Daniele Gerion, Randy Storer, Hiroyuki Takei
  • Patent number: 8415170
    Abstract: The invention provides a method for continuously detecting glucose concentration in a sample, including: (a) providing a biosensor comprising a transducer and a polysaccharide covered on the surface of the transducer; (b) providing a carbohydrate binding protein solution, wherein the carbohydrate binding protein has at least one receptor, and the receptor is capable of binding to the polysaccharide and glucose; (c) mixing a sample and the carbohydrate binding protein solution to form a mixture; (d) contacting the mixture with the biosensor; (e) detecting the amount of carbohydrate binding proteins bound to the polysaccharide by the biosensor, wherein glucose concentration of the sample is inversely proportional to the amount of carbohydrate binding proteins bound to the polysaccharide; and (f) refreshing the surface of the biosensor with a high concentration glucose solution.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: April 9, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Feng Lee, Chien-An Chen, Hong-Wen Chang, Yuh-Jiuan Lin
  • Patent number: 8415172
    Abstract: This invention relates to a detection system for measuring a fluorescent signal in a fluorescent assay. The system comprises a probe having a small sensing surface bound with a fluorescent label, and a light source and a detector both mounted at the proximal side of the sensing surface of the substrate. The invention also relates to a method for detecting an analyte in a liquid sample using a probe tip having a small surface area (?5 mm) and a high molecular weight polymer (?1 MD) having multiple binding molecules and multiple fluorescent labels. The binding reaction is accelerated by flowing the reaction solutions laterally and moving the probe tip up and down in the reaction vessels. The invention furthers relates to a fluorescent labeling composition comprising a cross-linked FICOLL® molecule having a plurality of binding molecules and a plurality of fluorescent labels.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: April 9, 2013
    Assignee: Access Medical Systems, Ltd.
    Inventor: Robert F. Zuk
  • Patent number: 8404479
    Abstract: A simple membrane assay method for detecting or quantitating an analyte in a specimen sample using an assay device equipped with a membrane bound with a capture-substance to capture the analyte, including the steps of filtering a specimen sample using a filter, dropping the filtrate onto said membrane and detecting the presence of the analyte in said specimen sample, as well as a simple membrane assay kit for detecting the presence of an analyte in a specimen sample, including (1) a filter tube, and (2) an assay device equipped with a membrane bound with a capture-substance to capture the analyte. The method or the kit can decrease the occurrence of false positivity and can provide a highly accurate detection of the analyte such as pathogen and antibody in a specimen collected in a medical scene or by an individual.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: March 26, 2013
    Assignee: Denka Seiken Co., Ltd
    Inventors: Hideharu Shimizu, Takeshi Watanabe, Kazuyuki Takizawa, Junji Matsuda, Toshinori Sato