Patents Examined by Christopher D. Koharski
  • Patent number: 9833610
    Abstract: A lead assembly includes an implantable lead. Electrodes are disposed along a distal end of the lead in an electrode array. Terminals are disposed along a proximal end of the lead in a proximal-most terminal array and a medial terminal array. A terminal extension electrically couples to the medial terminal array. A port is defined in a connector at a first end of the terminal extension. The port has a first end and an opposing second end and forms a continuous passageway therebetween. The port receives the medial terminal array. A contact array includes connector contacts that are disposed within the port and that couple electrically with a terminal array disposed along a second end of the terminal extension. The contact array couples electrically with terminals of the medial terminal array of the lead when the medial terminal array is received by the port.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: December 5, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Matthew Lee McDonald, Jacob Matthew Muhleman, Rafael Carbunaru
  • Patent number: 9833141
    Abstract: A system for processing heart rate measurement data measured during a physical exercise of a user. The system includes a server computer configured to: associate, during a registration procedure for a measurement device of a user, a device identifier of the measurement device with a user account of the user stored in the server computer; receive a device identifier and real-time heart rate measurement data over a network connection; identify the user's measurement device from the received device identifier; and store the received heart rate measurement data to the user account of the user on the basis of the association between the received device identifier and the corresponding user account.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: December 5, 2017
    Assignee: POLAR ELECTRO OY
    Inventors: Ville Kampman, Tuomas Jomppanen
  • Patent number: 9833195
    Abstract: A biomedical signal sensing circuit including a first and a second modulation unit, an amplifying unit, a first and a second demodulation unit is provided. The first modulation unit performs a first modulation operation to a first biomedical signal according to a first signal to generate a first modulation signal. The second modulation unit performs a second modulation operation to a second biomedical signal according to a second signal to generate a second modulation signal. The amplifying unit amplifies the first and second modulation signals, and adds the amplified first and second modulation signals to generate a third modulation signal. The first demodulation unit performs a first demodulation operation to the third modulation signal according to the first signal to generate a first sensing signal. The second demodulation unit performs a second demodulation operation to the third modulation signal according to the second signal to generate a second sensing signal.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: December 5, 2017
    Assignee: National Taiwan University
    Inventors: Yi-Lin Tsai, Fong-Wen Lee, Chih-Chan Tu, Bang-Cyuan Wang, Tsung-Hsien Lin
  • Patent number: 9821164
    Abstract: Devices, systems and methods for treating bronchial constriction related to asthma, anaphylaxis or chronic obstructive pulmonary disease wherein the treatment includes stimulating selected nerve fibers responsible for smooth muscle dilation at a selected region within a patient's neck, thereby reducing the magnitude of constriction of bronchial smooth muscle.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 21, 2017
    Assignee: Electrocore, LLC
    Inventors: Joseph P. Errico, Steven Mendez, Bruce J. Simon, James R. Pastena, Hecheng Hu, Arthur Ross
  • Patent number: 9814406
    Abstract: Methods and system are provided that identify motion data associated with consistent electrical and mechanical behavior for a region of interest of the heart. The methods and systems acquire electrical cardiac signals indicative of physiologic behavior of at least a portion of the heart over a plurality of cardiac cycles. The methods and systems acquires motion data indicative of mechanical behavior of a motion sensor over the plurality of cardiac cycles to form a motion data collection, the motion data indicative of mechanical behavior of the region of interest when the motion sensor is in contact with the region of interest. The designating ectopic beats within the cardiac cycles may be based on the electrical cardiac signals, the ectopic beats producing electrically inconsistent (EI) data within the motion data collection. The methods and systems identify mechanically inconsistent (MI) data within the motion data collection based on irregular changes in the motion data.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: November 14, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Hoda Razavi, Fujian Qu, Kyungmoo Ryu, Yelena Nabutovsky
  • Patent number: 9814515
    Abstract: A laparoscopic instrument assembly with a handle member and a removable tip. The handle member and removable tip are mated using a double threaded design which provides a secure connection with low electrical resistance. Electrical energy is provided through an inner shaft to the removable tip, and a return energy path is formed using an outer tubing of the instrument assembly. The removal tip includes a cutting and sealing device with a resistive member that is provided with the electrical energy, thereby enabling the tip to cut and seal tissue.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 14, 2017
    Assignee: MICROLINE SURGICAL, INC.
    Inventors: Thomas Haynes McGaffigan, Sharad H. Joshi
  • Patent number: 9808619
    Abstract: Electrotherapy systems and methods for delivering an electrostimulation treatment program to a user while reducing the risk of inducing cardiac fibrillation. The systems and methods detect electrostimulation treatment program delivery characteristics, including a pulse intensity above a preset limit; a pulse duration above a preset limit; an inappropriately compensated pulse; a charge per pulse above a predetermined limit; a current improperly exiting from a stimulation channel; a current present outside of a pulse; an excitation pulse and a compensation pulse generated on different channels; an inter-pulse time less than a predetermined limit; and a time between an excitation and a compensation pulse greater than a predetermined limit. The limits are selected in relation to an objective of reducing the risk of inducing cardiac fibrillation.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: November 7, 2017
    Assignee: Encore Medical Asset Corporation
    Inventors: Felix Buhlmann, Etienne Dunant, Steve Guex, David Truffer, Pierre-Yves Mueller
  • Patent number: 9808164
    Abstract: Cardiac dyssynchrony of a patient may be evaluated based on electrical activity of a heart of the patient and corresponding chest wall motion of the patient sensed via an external accelerometer. In one example, an acceleration signal indicative of the chest wall motion is generated by an external accelerometer positioned on the chest wall of the patient. A processor of a diagnostic device integrates the acceleration signal to generate a velocity signal and temporally correlates the velocity signal and an electrical cardiac signal. The processor determines a time delay between a deflection of the electrical cardiac signal indicating ventricular electrical activation and a subsequent greatest peak of the velocity signal. The time delay may indicate a degree of electromechanical delay of the left ventricle. In some examples, the processor generates an output indicative of a cardiac dyssynchrony status based on the time delay.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: November 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: Mirko de Melis, Giorgio Corbucci
  • Patent number: 9801758
    Abstract: An apparatus for controlled healing of ocular erosions is described. The apparatus comprising; an optical surface comprising an energizable controller capable of being programmed to transmit energy from an energy source onto/into an ocular surface, through the use of a current generator in electrical connection with energy emitting contacts capable of transmitting an electric field. The controller, current generator and energy emitting contacts are biocompatible or encapsulated by a conductive biocompatible layer to allow positioning of said apparatus in an ocular surface.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: October 31, 2017
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Randall Pugh, Annabelle Gallois-Bernos, Adam Toner, Andres Arrubla
  • Patent number: 9802054
    Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 31, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
  • Patent number: 9802056
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some illustrative examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional methods determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 31, 2017
    Assignee: Cameron Health, Inc.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 9795778
    Abstract: An electrode structure for an implantable stimulation lead for use in stimulating a target nerve structure within a patient includes a flexible backing defined by a major dimension extending in a direction of a first axis, and a minor dimension extending generally orthogonal to the first axis. The electrode structure also includes a plurality of electrodes coupled to the backing.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: October 24, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric A. Mokelke, Shantha Arcot-Krishnamurthy, Brian Soltis
  • Patent number: 9795726
    Abstract: The present disclosure provides for a method, control device, and implantable system, for acquiring a plurality of flow rate data points over time, each data point indicative of a flow rate of blood through the pump, calculating, based on the plurality of acquired flow rate data points, a value characterizing one or more features of a waveform formed from the plurality of flow rate data points; and determining, based on the value, the presence or absence of a suction condition in the pump.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: October 24, 2017
    Assignee: HeartWare, Inc.
    Inventors: Michael C. Brown, Neil Voskoboynikov
  • Patent number: 9795799
    Abstract: A system and method are described for delivering electrotherapy to a patient that includes delivering electrotherapy to defibrillate the patient and providing at least one non-interruptible time period for administration of CPR prior to entering a monitor mode during which a patient cardiac signal is monitored for indication of a shockable rhythm.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: October 24, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Daniel J. Powers
  • Patent number: 9789310
    Abstract: An ECT system capable of focusing the electrical signals on a specific portion of the patient's brain is provided. The ECT system includes a means of applying unidirectional electrical signals and asymmetric electrodes for focusing the signals on the patient. A method of titrating an electro-convulsive therapy (ECT) system and a method of operating an ECT system are also provided. The method includes setting an initial current value, administering an ECT signal to the patient, determining if the seizure threshold has been achieved, and repeating as necessary until the seizure threshold is achieved.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 17, 2017
    Assignee: MECTA CORPORATION
    Inventor: Harold A. Sackeim
  • Patent number: 9789302
    Abstract: A physiological signal of a patient is sensed with sense electrodes symmetrically arranged relative to a stimulation electrode. In some examples, a member includes a plurality of relatively small electrodes that are configured to function as both sense and stimulation electrodes. One or more of the electrodes may be selected as stimulation electrodes and two or more different electrodes of the member may be selected as sense electrodes that are symmetrically arranged relative to the one or more selected stimulation electrodes. In some examples, a member includes a plurality of levels of segmented sense electrodes and a plurality of levels of stimulation electrodes. The levels of sense electrodes are arranged such that each level of stimulation electrodes is adjacent at least two levels of sense electrodes symmetrically arranged relative to the level of stimulation electrodes.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 17, 2017
    Assignee: Medtronic, Inc.
    Inventors: Gabriela C. Molnar, Scott R. Stanslaski
  • Patent number: 9782325
    Abstract: A needle system for use by physical therapist in intramuscular stimulation procedures. A cylindrical non-conducting grip is located at a needle second end of a linear needle. A needle first end is pointed. An electrical connecting node is located on a needle between the needle first end and the needle second end. A second grip may be disposed on the needle such that the electrical connecting node is positioned in between the first and second grips. The electrical connecting node is operatively connected to the needle. A device generating electrical impulses is operatively connected to the electrical connecting node.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: October 10, 2017
    Assignee: PHYSIO PARTNERS, LLC
    Inventors: Laura Markey, Jeremiah Jorgensen
  • Patent number: 9782123
    Abstract: A resuscitation system for use by a rescuer for resuscitating a patient, comprising at least two high-voltage defibrillation electrodes, a first electrical unit comprising circuitry for providing resuscitation prompts to the rescuer, a second electrical unit separate from the first unit and comprising circuitry for providing defibrillation pulses to the electrodes, and circuitry for providing at least one electrical connection between the first and second units.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 10, 2017
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Mark Totman
  • Patent number: 9782580
    Abstract: A percutaneously implantable paddle lead includes an elongated lead body having a proximal portion and a distal portion; a plurality of terminals disposed on the proximal portion of the lead; a flexible paddle body coupled to the distal portion of the lead; and a plurality of electrodes disposed in the paddle body and electrically coupled to the terminals on the proximal portion of the lead. The percutaneously implantable paddle lead also includes a bonding material in contact with the paddle body and holding the paddle body in a compacted form prior to, and during, insertion into a percutaneous implantation tool. The bonding material is configured and arranged to release the paddle body during or soon after implantation into a patient so that the paddle body can deploy into its paddle-like form. Alternatively, at least one current-degradable fastener can be used instead of the binding material.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 10, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anne Margaret Pianca, Douglas Michael Ackermann
  • Patent number: 9775533
    Abstract: The present disclosure provides a system and method of determining a risk score for triage. In particular, a system is provided for providing an assessment of risk of a cardiac event for a patient, for example an incoming patient to a hospital emergency department complaining of chest pain. In the disclosure, the system includes an input device for measuring physiological data based vital signs parameter of the patient, a twelve-lead electrocardiogram (ECG) device for establishing an ECG obtained from results of the electrocardiography procedure, and determining an ECG parameter and a heart rate variability (HRV) parameter therefrom. An ensemble-based scoring system is further provided, establishing weighted classifier based on past patient data and where the vital signs parameter, the ECG parameter and the HRV parameter are compared to corresponding weighted classifiers to determine a risk score. A corresponding method to determine a risk score for triage is also provided.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 3, 2017
    Assignee: SINGAPORE HEALTH SERVICES PTE LTD
    Inventors: Marcus Eng Hock Ong, Nan Liu