Patents Examined by Christopher D. Koharski
  • Patent number: 9706931
    Abstract: A biosignal measuring device has a first information acquisition module, a second information acquisition module, a first calculation module, a second calculation module, a third calculation module, a heartbeat interval estimation module, a determination module, and an output module. The first information acquisition module acquires the pulse wave signal. The second information acquisition module acquires an electrocardiogram signal. The first calculation module calculates a pulse wave velocity based. The second calculation module determines a heartbeat interval. The third calculation module calculates a relationship between pulse wave velocity and the heartbeat interval. The heartbeat interval estimation module estimates an estimated heartbeat interval based on pulse wave velocity and calculated relationship. The determination module determines whether the position of the first and second information acquisition modules has changed based on the heartbeat interval and the estimated heartbeat interval.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 18, 2017
    Assignee: TDK Corporation
    Inventors: Sawa Fuke, Takuji Suzuki, Kanako Nakayama
  • Patent number: 9707396
    Abstract: Techniques, devices, and systems may include screening effective therapies using cortical evoked potentials. In one example, a system may be configured to receive a first sensed cortical evoked potential of a patient that occurred in response to an induced sensation at an anatomical region different from a brain region of the patient and receive a second sensed cortical evoked potential that occurred in response to electrical stimulation delivered to one or more nerves associated with the anatomical region. The electrical stimulation may be at least partially defined by a set of therapy parameter values. The system may also compare a first value of a characteristic of the first sensed cortical evoked potential to a second value of the characteristic of the second sensed cortical evoked potential and determine, based on the comparison, efficacy of a therapy configured to treat a condition associated with the anatomical region.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: July 18, 2017
    Assignee: Medtronic, Inc.
    Inventors: Xin Su, Dwight E. Nelson
  • Patent number: 9700717
    Abstract: An apparatus and means of detecting tissue conditions conducive to pressure ulcer formation and reversing these conditions which includes the steps of: noninvasively detecting tissue parameters indicative of tissue health, calculating when these conditions fall outside normal healthy physiological ranges in such a manner that indicates future formation of a pressure ulcer, and in such a situation applying therapeutic stimulation to normalize tissue physiological condition. Said apparatus and method comprise a single, wearable unit. The device can be used in bed or in a wheelchair to treat and prevent the development of pressure ulcers.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: July 11, 2017
    Assignee: Chalfont LLC
    Inventors: Anthony Richard Mawson, Robert J. Hirko
  • Patent number: 9700721
    Abstract: One aspect of the present disclosure relates to a method for modulating, suppressing or preventing an ocular disorder in a subject. One step of the method can include positioning at least one electrode on or proximate to at least one of a sphenopalatine ganglion (SPG), a sphenopalatine nerve (SN), a vidian nerve (VN), a greater petrosal nerve (GPN), a deep petrosal nerve (DPN), or a branch thereof, of the subject. Next, the at least one electrode can be activated to apply an electrical signal to at least one of the SPG, the SN, the VN, the GPN, the DPN, or the branch thereof.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: July 11, 2017
    Assignee: Autonomic Technologies, Inc.
    Inventors: Amy M. Goodman, Anthony V. Caparso
  • Patent number: 9700659
    Abstract: A cardiac assist device is provided that can be deployed in any region of the aorta by minimally invasive techniques by the way of an inventive fastener that affixes the device to the aorta wall at the site of an aortonomy. The devices and methods described herein allow for improved patient outcome.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: July 11, 2017
    Assignee: VIADERM LLC
    Inventors: Allen B. Kantrowitz, Chris Mortis
  • Patent number: 9700726
    Abstract: A system and method to sense heart sounds with one or more implantable medical devices according to one or more signal processing parameters. The method alters one or more of the parameters as a function of one or more physiologic triggering events. The method then senses heart sounds with the one or more implantable medical devices according to at least the one or more altered signal processing parameters.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 11, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Krzysztof Z. Siejko, Carlos Haro, Abhilash Patangay, Gerrard M. Carlson, Andres Belalcazar
  • Patent number: 9694179
    Abstract: An exemplary system includes 1) a cochlear implant module configured to be implanted within a patient and comprising cochlear implant circuitry configured to apply electrical stimulation representative of one or more audio signals to the patient, 2) an implantable sound processor module configured to be implanted within the patient and comprising sound processor circuitry configured to optically transmit data and/or power to the cochlear implant circuitry, and 3) an optical connector assembly configured to facilitate removable coupling of the implantable sound processor module to the cochlear implant module by way of the optical connector assembly. The optical connector assembly comprises one or more optical fibers configured to facilitate the optical transmission of the data and/or the power from the sound processor circuitry to the cochlear implant circuitry while the implantable sound processor module is removably coupled to the cochlear implant module by way of the optical connector assembly.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: July 4, 2017
    Assignee: Advanced Bionics AG
    Inventors: Rainer Platz, Lee F. Hartley, Lakshmi N. Mishra
  • Patent number: 9694160
    Abstract: A catheter includes a shaft having at least one lumen. The lumen comprises a longitudinally-extending trough defined by a longitudinally-extending recess, within which a component is disposed, and a longitudinally extending open edge. The lumen further comprises a longitudinally-extending channel defined by a longitudinally-extending cavity and by the open edge of the trough. A planarity wire is disposed within the cavity and is configured to close the open edge of the trough to within a pre-defined tolerance that is less than the size of the component to retain the component in the recess.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: July 4, 2017
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John M. Hastings, Gary B. LaTraille, Elizabeth Younger
  • Patent number: 9693832
    Abstract: Transducer-based systems can be configured to display a graphical representation of a transducer-based device, the graphical representation including graphical elements corresponding to transducers of the transducer-based device, and also including between graphical elements respectively associated with a set of the transducers and respectively associated with a region of space between the transducers of the transducer-based device. Selection of a between graphical element can cause activation of the set of transducers associated with the selected between graphical element. Selection of a plurality of between graphical elements and graphical elements can cause visual display of a corresponding activation path in the graphical representation. Visual characteristics of graphical elements and between graphical elements can change based on an activation-status of the corresponding transducers.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 4, 2017
    Assignee: Kardium Inc.
    Inventors: Douglas Wayne Goertzen, Jeffery Charles Brewster, Michael Hermann Weber, Daniel Martin Reinders, Daniel Robert Weinkam
  • Patent number: 9693704
    Abstract: A system for assessing a cardiac condition of a subject includes a sensor configured to record a plurality N of electrocardiographic signals from the subject to generate an ECG (electrocardiogram). The system further includes a processor configured to compute an RMS (root-mean-square) magnitude function from the recorded signals, and to measure from the RMS magnitude function an RMS variable that contains information about the cardiac condition of the subject. The ECG may be a standard 12-lead clinical ECG. The measured RMS variables may include RMS T-wave width, RMS RT recovery time, and RMS QT interval.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: July 4, 2017
    Inventors: Robert L. Lux, Jay W. Mason
  • Patent number: 9687164
    Abstract: Embodiments of the invention disclose a method and a system for signal analyzing and a processing module of the system. The signal analyzing system includes a plurality of first electrodes, a plurality of second electrodes, and a processing module. The first electrodes transmit a plurality of first input signals. The second electrodes transmit a plurality of second input signals. The processing module generates a body electrical signal according to at least one of the plurality of first input signals and at least one of the plurality of second input signals, generates a first filtered signal corresponding to the plurality of first input signals, generates a second filtered signal corresponding to the plurality of second input signals, and generates a lead signal according to the body electrical signal, the first filtered signal and the second filtered signal.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: June 27, 2017
    Assignee: MEDIATEK INC.
    Inventor: Po-Wen Ku
  • Patent number: 9681819
    Abstract: Method of determining atrial fibrillation including determining if a patient's pulse beats form an irregular pattern and only if so, indicating the presence of an irregular pulse to the patient and obtaining an electrocardiogram for determining atrial fibrillation. Initially, a pulse is detected at regular time intervals of a first appendage of the patient when motionless using a pulse detector secured to the first appendage and pulse rhythms from a succession of time intervals are detected each corresponding to a respective interval of time between successive pulse beats of a sequence of the pulse beats. Then, an electrically conductive unit is attached to a second appendage of the patient, or a wearable electrocardiogram is attached to the patient, and electrocardiograms signals are detected simultaneously with pulse rhythms while the first appendage is motionless and analyzed to determine whether, in combination, they are indicative of atrial fibrillation.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 20, 2017
    Inventor: Joseph Wiesel
  • Patent number: 9681875
    Abstract: Some embodiments of a system or method for treating heart tissue can include a control system and catheter device operated in a manner to intermittently occlude a heart vessel for controlled periods of time that provide redistribution of blood flow. In particular embodiments, the system and methods may be configured to monitor at least one input signal detected at a coronary sinus and thereby execute a process for determining a satisfactory time period for the occlusion of the coronary sinus. In further embodiments, after the occlusion of the coronary sinus is released, the control system can be configured to select the duration of the release phase before the starting the next occlusion cycle.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: June 20, 2017
    Assignee: Miracor Medical Systems Co.
    Inventors: Werner Mohl, Gregor Neumayr, Alem Jusic
  • Patent number: 9680970
    Abstract: A method is provided for a bridge device to interface between an external device and an implantable medical device (“IMD”), the bridge device includes a system on a chip (“SoC”) having a memory, an input/output interface, a standard wireless computer network (“SWCN”) controller and a bridge controller integrated into a single integrated circuit (“IC”). The method includes configuring the bridge controller to convert data between a Medical Implant Communication Service (MICS) protocol and a SWCN protocol, coupling a MICS controller to the SoC, and configuring the MICS controller to manage operation of a first transceiver based on the MICS protocol. The method includes configuring the SWCN controller to manage operation of a second transceiver based on the SWCN protocol, communicating between the bridge device and an IMD utilizing the first transceiver, and communicating between the bridge device and an external device utilizing the second transceiver.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: June 13, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Yongjian Wu, Jun Yang, Balakrishnan Shankar, Chao-Wen Young, Reza Shahandeh
  • Patent number: 9675297
    Abstract: Provided is an apparatus and method for analyzing a biological signal. The apparatus may measure the biological signal, detect a noise signal influencing the electrical characteristics of the measured biological signal, and display the measured biological signal by distinguishing a normal section of the measured biological signal from an abnormal section of the biological signal.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 13, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-pal Kim, Seok-chan Kim
  • Patent number: 9669216
    Abstract: Disclosed are methods for regulating neurotrophin levels within a human body. The invention utilizes an implantable signal generator to deliver stimulation to neural tissue elements. Alternatively, an implantable pump may be utilized to delivery one or more drugs. The implanted device delivers treatment therapy to the neural tissue to thereby alter the level of neurotrophic factors such as BDNF expressed by the influenced neural tissue. A sensor may be used to detect various symptoms of a nervous system disorder. A microprocessor algorithm may then analyze the output from the sensor to regulate the treatment therapy delivered to the body. The invention describes a novel method to regulate the intrinsic levels of neurotrophins and may be used to treat patients with neurological and cognitive disorders.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 6, 2017
    Assignee: Functional Neuromodulation Inc.
    Inventor: Andres M. Lozano
  • Patent number: 9674620
    Abstract: A cochlear implant system includes: an electrode array implanted within a cochlea; an internal processor in communication with the electrode array; an implanted antenna which is electrically coupled to the internal processor; and a modular external headpiece which is removably positioned over the implanted antenna, the modular external headpiece including a core containing a sound processor for processing sound and providing a corresponding signal to the implanted antenna; and a modular component configured to releasably engage the core and supply electrical power to the core.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: June 6, 2017
    Assignee: Advanced Bionics AG
    Inventors: Scott A. Crawford, Douglas P. Lynch, Carla Mann Woods
  • Patent number: 9668666
    Abstract: In a system and method for reconstructing cardiac activation information, an analysis cardiac signal and a reference cardiac signal are accessed and processed to determine a first point of change in the analysis cardiac signal at which a derivative of the analysis cardiac signal diverges with respect to a derivative of the reference cardiac signal. The signals are processed to determine a second point of change in the analysis cardiac signal at which a different derivative of the analysis cardiac signal with respect to a different derivative of the reference cardiac signal. An activation onset time is assigned in the analysis cardiac signal at a point based on a mathematical association of the first point of change and the second point of change to define cardiac activation indicating a beat in the analysis cardiac signal.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 6, 2017
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv Narayan, Carey Robert Briggs, Ruchir Sehra
  • Patent number: 9662431
    Abstract: The present invention relates to a rotary blood pump with a double pivot contact bearing system with an operating range between about 50 mL/min and about 1500 mL/min. The rotary blood pump is part of a blood pump system that includes blood conduit(s), a control system with optional sensors, and a power source. Embodiments of the present invention may include elements such as wear resistant bearing materials, a rotor back plate for magnetic attraction of the rotor to reduce bearing pivot bearing forces and wear, a rotor size and shape and a bearing gap that combine to create a hydrodynamic bearing effect and reduce bearing pivot bearing forces and wear, improved intravascular conduits with increased resistance to thrombosis, conduit insertion site cuffs to resist infection, and conduit side ports amenable to the easy insertion of guidewire and catheter-based medical devices.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: May 30, 2017
    Assignee: FLOW FORWARD MEDICAL, INC.
    Inventors: F. Nicholas Franano, Howard M. Loree, II, Geoff Tansley, Steve Woodard, Barrett Hutto
  • Patent number: 9662498
    Abstract: A neuroelectric sensor and stimulator system includes a first antenna, a reader coupled to the first antenna for transmitting stimulation controls and power to a second antenna, and for receiving sensor data transmitted from the second antenna via the first antenna, and at least one neuroelectric sensor stimulator array including the second antenna, a rectifier coupled to the second antenna for extracting power transmitted from the first antenna, a controller coupled to the second antenna for decoding controls transmitted from the first antenna to the second antenna for the neuroelectric sensor stimulator array, a plurality of sensors, a multiplexer coupled to the controller and to the plurality of sensors for selecting a single sensor, and a plurality of stimulators coupled to the controller for stimulating neurons, wherein the rectifier, the controller, the plurality of sensors, the multiplexer, and the plurality of stimulators include graphene.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 30, 2017
    Assignee: HRL Laboratories, LLC
    Inventors: Kyung-Ah Son, Jeong-Sun Moon, Zhiwei A. Xu, Brian N. Limketkai, Jongchan Kang, Tahir Hussain