Patents Examined by Chu Chuan (JJ) Liu
  • Patent number: 8494604
    Abstract: Multi-wavelength photon density wave medical systems, methods, and devices are provided. In one embodiment, a multi-wavelength photon density wave patient monitor includes multiple light sources, a driving circuit, a fiber coupler, a sensor cable connector, a wavelength demultiplexer, detectors, and data processing circuitry. The driving circuit may modulate the light sources to produce several single-wavelength input photon density wave signals, which the fiber coupler may join into a multi-wavelength input signal. The sensor cable connector may provide this multi-wavelength input signal to a sensor attached to the patient and receive a multi-wavelength output signal. The wavelength demultiplexer may separate the multi-wavelength output signal into single-wavelength output signals for detection by the detectors.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: July 23, 2013
    Assignee: Covidien LP
    Inventors: Youzhi Li, Andy S. Lin, Edward M. McKenna
  • Patent number: 8483790
    Abstract: The present invention provides non-adhesive oximeter sensors for patients with sensitive skin. Sensors of the present invention include a light emitting diode (LED) and a photodetector. The LED and the photodetector may be covered by a reflective mask and a faraday shield. Sensors of the present invention have a non-adhesive laminated layer. The non-adhesive layer contacts, but does not stick to, the patient's skin. When the sensor is removed from the patient, the non-adhesive layer does not tear or irritate the patient's skin. The non-adhesive layer preferably has a large static coefficient of friction. Sensors of the present invention can also have hook-and-loop layers. The sensor can be attached to the patient's body by wrapping the sensor around the patient and engaging the hook layer to the loop layer.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: July 9, 2013
    Assignee: Covidien LP
    Inventors: Don Hannula, Paul D. Mannheimer
  • Patent number: 8478376
    Abstract: According to embodiments, a pulse band region is identified in a wavelet scalogram of a physiological signal (e.g., a plethysmograph or photoplethysmograph signal). Components of the scalogram at scales larger than the identified pulse band region are then used to determine a baseline signal in wavelet space. The baseline signal may then be used to normalize the physiological signal. Physiological information may be determined from the normalized signal. For example, oxygen saturation may be determined using a ratio of ratios or any other suitable technique.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: July 2, 2013
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Braddon M. Van Slyke, Paul Stanley Addison, James Nicholas Watson, Scott McGonigle
  • Patent number: 8457703
    Abstract: A pulse oximeter may reduce power consumption in the absence of overriding conditions. Various sampling mechanisms may be used individually or in combination. Various parameters may be monitored to trigger or override a reduced power consumption state. In this manner, a pulse oximeter can lower power consumption without sacrificing performance during, for example, high noise conditions or oxygen desaturations.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: June 4, 2013
    Assignee: Masimo Corporation
    Inventor: Ammar Al-Ali
  • Patent number: 8457707
    Abstract: A congenital heart disease monitor utilizes a sensor capable of emitting multiple wavelengths of optical radiation into a tissue site and detecting the optical radiation after attenuation by pulsatile blood flowing within the tissue site. A patient monitor is capable of receiving a sensor signal corresponding to the detected optical radiation and calculating at least one physiological parameter in response. The physiological parameter is measured at a baseline site and a comparison site and a difference in these measurements is calculated. A potential congenital heart disease condition in indicated according to the measured physiological parameter at each of the sites or the calculated difference in the measured physiological parameter between the sites or both.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 4, 2013
    Assignee: Masimo Corporation
    Inventor: Massi E. Kiani
  • Patent number: 8452359
    Abstract: A system for determining the concentration of an analyte in at least one body fluid in body tissue comprises an infrared light source, a body tissue interface, a detector, and a central processing unit. The body tissue interface is adapted to contact body tissue and to deliver light from the infrared light source to the contacted body tissue. The detector is adapted to receive spectral information corresponding to infrared light transmitted through the portion of body tissue being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid, the algorithm adapted to convert the received spectral information into the concentration of the analyte in at least one body fluid.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: May 28, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Mihailo V. Rebec, James E. Smous, Steven D. Brown, Hu-Wei Tan
  • Patent number: 8442607
    Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: May 14, 2013
    Assignee: Sotera Wireless, Inc.
    Inventors: Matthew John Banet, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming, Marshal Singh Dhillon, Andrew Stanley Terry
  • Patent number: 8437826
    Abstract: A clip-style pulse sensor may be adapted to apply limited, even pressure to a patient's tissue. A clip-style sensor is provided that reduces motion artifacts by exerting limited, uniform pressure to the patient tissue to reduce tissue exsanguination. Further, such a sensor provides a secure fit while avoiding discomfort for the wearer.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: May 7, 2013
    Assignee: Covidien LP
    Inventor: Rodney P. Chin
  • Patent number: 8437825
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 7, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: 8437824
    Abstract: The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 7, 2013
    Assignee: Sotera Wireless, Inc.
    Inventors: Jim Moon, Devin McCombie, Marshal Dhillon, Matt Banet
  • Patent number: 8433383
    Abstract: An optical sensor having a cover layer, an emitter disposed on a first side of the cover, a detector disposed on the first side of said cover, and a plurality of stacked independent adhesive layers disposed on the same first side of the cover, wherein the top most exposed adhesive layer is attached to a patient's skin. Thus, when the sensor is removed to perform a site check of the tissue location, one of the adhesive layers may also be removed and discarded, exposing a fresh adhesive surface below for reattachment to a patient's skin. The independent pieces of the adhesive layers can be serially used to extend the useful life of the product.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: April 30, 2013
    Assignee: Covidien LP
    Inventors: Michael Patrick O'Neil, Paul Mannheimer, Rodney Chin, Adnan Merchant, Joseph Coakley, Don Hannula
  • Patent number: 8428674
    Abstract: A spectrophotometric sensor assembly for non-invasive monitoring of a blood metabolite within a subject's body tissue is provided that includes a pad, a light source, and a light detector The light source is operative to emit light signals of a plurality of different wavelengths. The light detector is operative to detect light emitted by the light source and passed through the subject's body tissue. The light detector is at least partially enclosed in EMI shielding. In some embodiments, the light detector and EMI shielding are disposed in a detector housing that encloses the light detector and shielding. The housing is aligned with a detector aperture disposed in the pad.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: April 23, 2013
    Assignee: CAS Medical Systems, Inc.
    Inventors: Karen Duffy, Douglas Pirc, George Brocksieper, Paul B. Benni
  • Patent number: 8423106
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: April 16, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Patent number: 8406835
    Abstract: A spectroscopic system for determining a property of a fluid flowing through a volume of interest underneath the surface of the skin of a patient is described. The spectroscopic system comprises: a probe head having an objective for directing an excitation beam into the volume of interest and for collecting return radiation from the volume of interest; a base station having a spectroscopic analysis unit and a power supply; and a cable connecting the probe head and the base station for transmission of the return radiation from the probe head to the base station and for providing the probe head with power from the power supply of the base station.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: March 26, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gerhardus Wilhelmus Lucassen, Wouter Harry Jacinth Rensen, Michael Cornelis Van Beek, Marjolein Van Der Voort, Bernardus Leonardus Gerardus Bakker
  • Patent number: 8401605
    Abstract: A measuring apparatus, a physiological sensor, and an interface unit for determining blood parameters of a subject are disclosed. The sensor comprises an emitter unit comprising a first plurality of emitter elements configured to emit radiation at a second plurality of wavelengths and a detector unit configured to receive radiation generated by the emitter elements and transmitted through the tissue of the subject, wherein the detector unit is further configured to produce electric measurement signals indicative of absorption caused by the blood of the subject. The sensor or the interface unit is provided with a memory that stores emitter activation information for at least a third plurality of wavelengths, thereby to enable a monitoring unit operably connectable to the physiological sensor to employ a combination of wavelengths selected from the third plurality of wavelengths, wherein the third plurality is equal to or smaller than the second plurality.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventor: Matti Huiku
  • Patent number: 8396527
    Abstract: A sensor may be adapted to reduce motion artifacts by mitigating the effects of the tissue moving within the sensor. A sensor is provided with an elastomeric sensor body adapted to accommodate patient motion. Further, a sensor is provided in which the sensor cable is arranged to mitigate its pressure on a patient's tissue.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 12, 2013
    Assignee: Covidien LP
    Inventor: Carine Hoarau
  • Patent number: 8385995
    Abstract: A physiological parameter tracking system has a reference parameter calculator configured to provide a reference parameter responsive to a physiological signal input. A physiological measurement output is a physiological parameter derived from the physiological signal input during a favorable condition and an estimate of the physiological parameter according to the reference parameter during an unfavorable condition.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: February 26, 2013
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Mohamed Diab, Walter M. Weber
  • Patent number: 8380272
    Abstract: A sensor used to measure physiological characteristics of body tissues is provided. The physiological sensor includes a first light source assembly having a first light source in parallel with a second light source. Each of the first light source and the second light source have an anode and a cathode. A second light source assembly includes a third light source in parallel with a fourth light source. Each of the third light source and the fourth light source have an anode and a cathode. The anode of the first light source is electrically connected to the cathode of the second light source, the anode of said third light source, and the cathode of said fourth light source. The anode of the third light source is electrically connected to the cathode of the fourth light source.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 19, 2013
    Assignee: Covidien LP
    Inventors: Bruce J. Barrett, Oleg Gonopolsky, Ronald A. Widman, Rick Scheuing
  • Patent number: 8369913
    Abstract: A living body measuring instrument having a sub-mount on which plural light-emitting devices oscillating at different wavelengths are mounted in proximity, one optical output monitoring device that detects the optical outputs of these light-emitting devices and a light source mounted on the same heat sink which are housed in one can-package, a light-receiving device that detects a signal from a living body, and a circuit that separates the optical output signals from the light-emitting devices, wherein at least one light-emitting device has a light-emitting layer including a In1-xGaxAsyP1-y quantum well layer and a barrier layer on a GaAs substrate, the strain ? satisfies 0.4%???1.4%, wherein y in the composition satisfies 0.10?y?0.45, and the wavelength of the emitted light is from 700 nm to 760 nm.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: February 5, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Etsuko Nomoto, Tsukuru Ohtoshi, Masashi Kiguchi
  • Patent number: 8364217
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is a system, a device and a method for sensing the concentration of an analyte in a fluid (for example, a fluid sample) or matrix. The analyte may be glucose or other chemical of interest. The fluid or matrix may be, for example, the fluid or matrix in the body of an animal (for example, human), or any other suitable fluid or matrix in which it is desired to know the concentration of an analyte. In one embodiment, the invention is a system and/or device that includes one or more layers having a plurality of analyte-equivalents and mobile or fixed receptor molecules with specific binding sites for the analyte-equivalents and analytes under analysis (for example, glucose). The receptor molecules, when exposed to or in the presence of analyte (that resides, for example, in a fluid in an animal), bind with the analyte (or vice versa).
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 29, 2013
    Assignee: BioTex, Inc.
    Inventors: Ralph Ballerstadt, Roger McNichols, Ashok Gowda