Patents Examined by Daniel J. Jenkins
  • Patent number: 6699821
    Abstract: A Nb3Al superconducting wire and method for fabricating the same wherein Nb and Al powders in combination, or Nb—Al alloy powders are encapsulated in a metal tube, preferably copper or copper-alloy (e.g., CuNi), and the resultant composite is processed by conventional means to fine wire. Multifilamentary composites are produced by rebundling of the powder-filled wires into metal tubes followed by conventional processing to wire of a desired size. It is required for the use of Nb and Al powders in combination that the Nb and Al powder particle size be less than 100 nm. In the use of Nb—Al alloy powders, it is preferred, but not required, that the powder particle size be similarly of a nanometer scale. The use of nanometer-scale powders is beneficial to wire fabrication, allowing the production of long wire piece-lengths. At final wire size, the wires produced by practice of the present invention are heat treated at temperatures below the melting point of copper (1083° C.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: March 2, 2004
    Assignee: Composite Materials Technology, Inc.
    Inventors: Mark K. Rudziak, Leszek R. Motowidlo, Terence Wong
  • Patent number: 6699431
    Abstract: A method of producing an anode for a capacitor, which includes the steps of molding a continuously deformable material onto a flat anode conductor and simultaneously externally shaping the material, and solidifying the material to form an anode body.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: March 2, 2004
    Assignee: Epcos AG
    Inventors: Helge Clasen, Willy Knabe, Klaus Gnann, Josef Gerblinger, Dieter Hahn
  • Patent number: 6696015
    Abstract: The method for producing a rare-earth sintered magnet of the present invention includes the steps of: compacting alloy powder for the rare-earth sintered magnet to form a green compact; loading the green compact into a case having a structure restricting a path through which gas flows between the outside and inside of the case, and placing a gas absorbent at least near the path; and sintering the green compact by heating the case including the green compact inside in a decompressed atmosphere.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: February 24, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Koki Tokuhara, Akiyasu Oota, Tsuyoshi Wada, Katsumi Okayama, Tomoiku Ohtani, Kunitoshi Kanno
  • Patent number: 6692690
    Abstract: There is now provided a cemented carbide grade for rock excavation purposes with 88-96 weight % WC, preferably 91-95% weight % WC, with a binder phase consisting of only cobalt or cobalt and nickel, with a maximum of 25% of the binder being Ni, possibly with small additions of rare earth metals, such as Ce and Y, up to a maximum of 2% of the total cemented carbide. The WC grains are rounded because of the process of coating the WC with cobalt, and not recrystallized or showing grain growth or very sharp cornered grains like conventionally milled WC, thus giving the bodies surprisingly high thermal conductivity. The average grain size should be from 8-30 &mgr;m, preferably from 12-20 &mgr;m. The maximum grain size does not exceed 2 times the average value and no more than 2% of the grains found in the structure are less than half of the average grain size.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: February 17, 2004
    Assignee: Sandvik AB
    Inventors: Jan Åkerman, Thomas Ericson
  • Patent number: 6692581
    Abstract: A solder paste for fabricating bumps includes a flux and metallic alloy powder. The metallic alloy powder includes a plurality of low eutectic metallic alloy granules, and the size of these metallic alloy granules is 20-60 &mgr;m and the average size of the metallic granules is 35 &mgr;m to 45 &mgr;m.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 17, 2004
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Ho-Ming Tong, Chun-Chi Lee, Jen-Kuang Fang, Ching-Fu Horng, Shih-Kuang Chen, Shyh-Ing Wu, Chun-Hung Lin, Yung-Chi Lee, Yu-Chen Chou, Tsung-Hua Wu, Su Tao
  • Patent number: 6689183
    Abstract: A composition of metal powder for powder metallurgy applications comprising an iron-based powder metal admixed with a minority fraction of a ferrite powder having a lesser particle-size distribution. The ferrite particles are associated with an exterior surface of the iron-based particles and, after compression molding by a powder metallurgy technique, are incorporated into the microstructural pores between adjacent particles of iron-based powder. A composite structure formed from the composition of the present invention has an improved overall permeability and overall resistivity. A binder, such as a thermoplastic polyacrylate, may be added to the admixture of iron-based and ferrite powders for promoting the association of the ferrite powder with the iron-based powder.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: February 10, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: David Earl Gay
  • Patent number: 6689184
    Abstract: Molding compositions and forming processes for normally rust-prone iron-based powders, and articles produced therefrom. Metal alloy systems that can be successfully formed using the processes of the invention, include elemental iron and iron alloys including low and medium alloy steels, tool steels and a number of specialty iron-base alloys.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: February 10, 2004
    Assignee: Latitude Manufacturing Technologies, Inc.
    Inventor: Robert Craig Morris
  • Patent number: 6689188
    Abstract: The present invention relates to improved metallurgical powder compositions that incorporate solid lubricants, methods for preparing and using the same, and methods of making compacted parts. Ejection properties, such as stripping pressure and sliding pressure, of compacted parts can be improved by using the solid lubricants. The solid lubricants contain polyalkylene-polyalkylene oxide block copolymer lubricants or a combination of polyalkylene-polyalkylene oxide block copolymer lubricants and at least one additional lubricant. The polyalkylene-polyalkylene oxide block copolymer lubricants include at least one block A of a linear or branched polyalkylene chain having from about 5 to about 500 carbon atoms, and at least one block B of an alkylene oxide chain having a formula —[O(CH2)r]m—, or —[(CH2)rO]m—. The polyalkylene block copolymer lubricants can have a formula represented as A-B or A-B-A.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: February 10, 2004
    Assignee: Hoeganes Corporation
    Inventors: Sydney Luk, George Poszmik
  • Patent number: 6689311
    Abstract: A method for selectively and rapidly extracting/removing a plasticizer from a compact such as a green laminate that is produced at a certain point in the process of manufacturing a multilayer ceramic capacitor. Carbon dioxide is introduced into a pressure chamber in which the green laminate has been placed, and the temperature and the pressure of the pressure chamber are set to 40° C. and 10 MPa, respectively, so that the pressure chamber is filled with a supercritical carbon dioxide. The plasticizer is extracted/removed from the green laminate by using the supercritical carbon dioxide. Then, a de-binder step and a baking step are performed in an ordinary manner. By performing the de-plasticizer process of selectively extracting/removing the plasticizer before the de-binder step, it is possible to suppress the formation of a graphite-like substance even if the temperature is increased rapidly in the subsequent de-binder step and the baking step.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 10, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kiyoyuki Morita, Hideyuki Okinaka, Gen Itakura
  • Patent number: 6685880
    Abstract: A cemented carbide insert of a first grade has at least one cutting point consisting of a cemented carbide of a second grade with different composition and/or grain size with an uneven transition zone between the first and second grade.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 3, 2004
    Assignee: Sandvik Aktiebolag
    Inventors: Lars-Åke Engström, Hélène Ouchterlony
  • Patent number: 6682693
    Abstract: An inclined function material is formed with an iron layer on a surface of a carbon material. This material can be used in a carbon base member and does not limit the choice of desired characteristics in a carbon base member. The process by which the carbon base member is formed also ensures the iron layer is integrated firmly with the surface of the carbon material. A suitable amount of an iron powder having a particle diameter of 5 to 15 &mgr;m is placed directly on the surface of a carbon material, which is sintered in advance under suitable conditions, and stuck to the surface uniformly and flatly. The iron powder and the carbon material are sintered at 1000° C. to 1300° C. and preferably 1050 to 1150° C. for 1 to 2 hours and preferably about 1.5 hours to form a carbon base member in which the iron layer is formed on one surface of the carbon base member.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: January 27, 2004
    Assignee: Mitsuba Corporation
    Inventors: Yoshihiro Tanaka, Mitsunari Ishizaki, Motoaki Kuribara
  • Patent number: 6682579
    Abstract: Metallurgical powder compositions are provided that include silicon carbide to enhance the strength, ductility, and machine-ability of the compacted and sintered parts made therefrom. The compositions generally contain a metal powder, such as an iron-based powder, that constitutes the major portion of the composition. A silicon carbide-containing powder is blended with the metal powder, preferably in the form of a silicon carbide powder. Optionally, common alloying powders, lubricants, binding agents, and other powder metallurgy additives can be blended into the metallurgical composition. The metallurgical powder composition is used by compacting it in a die cavity to produce a “green” compact that is then sintered, preferably at relatively high temperatures.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: January 27, 2004
    Assignee: Hoeganaes Corporation
    Inventors: Kalathur S. Narasimhan, Nikhilesh Chawla
  • Patent number: 6680024
    Abstract: A process for powder metallurgic manufacture of a coupling body (1) with a crown (2) of coupling teeth (3) is described, whose flanks (5) going out from wedge-shaped end faces (4) are in relief, such that a formed body with coupling teeth (3), which have wedge-shaped end faces (4), but flanks (5) parallel to axis, is pressed out of a sintering powder and sintered to a molded blank, whose coupling teeth (3) for forming the flank reliefs are subjected to axial compression molding between two form tools (9, 10) on the one hand for the wedge-shaped end faces (4) and on the other hand for the flank reliefs.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 20, 2004
    Assignee: Miba Sintermetall Aktiengesellschaft
    Inventor: Alois Grundner
  • Patent number: 6679934
    Abstract: Nitrided valve metals are described, such as nitrided tantalum and nitrided niobium. The nitrided valve metals preferably have improved flow properties, higher Scott Densities, and/or improved pore size distribution which leads to improved physical properties of the valve metal and improved electrical properties once the valve metal is formed into a capacitor anode. Processes for preparing a nitrided valve metal are further described and involve nitriding the valve metal at a sufficient temperature and pressure during a heat treatment that is prior to the deoxidation step. Capacitor anodes and other products incorporating the valve metals of the present invention are further described.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: January 20, 2004
    Assignee: Cabot Corporation
    Inventors: Bhamidipaty K. D. P. Rao, Shi Yuan
  • Patent number: 6676725
    Abstract: Shaped bodies containing particulate iron materials, such as cast pellets, briquettes and the like, with sufficient strength to withstand temperatures of up to at least 1000° C. can be obtained by using a fully hydrated high-alumina cement as the binder. The strength of the pellets at elevated temperatures can be further enhanced by adding small amounts of bentonite, silica fume or other suitable supplementary cementing materials, and super plasticizer. The iron particulate materials, typically having a size range of from about 0.01 mm to 6 mm, include ore fines, sinter fines, BOF and EAF dusts, mill scale, and the like. Powdered carbonaceous material, such as ground coal or coke, may also be added to the pellets. The shaped bodies are suitable for use in blast furnaces, basic oxygen furnaces, and in DRI processes.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: January 13, 2004
    Assignee: Her Majesty the Queen in right of Canada as represented by the Minister of Natural Resources
    Inventors: Jay Aota, Lucie Morin
  • Patent number: 6676892
    Abstract: A method of fabricating a fully dense, three dimensional object by direct laser sintering is disclosed. In a chamber with a partial pressure atmosphere, a beam of directed energy melts metallic powder in order to form a solid layer cross section. Another layer of powder is deposited and melted, along with a portion of the previous layer. The energy beam typically is in the form of a laser, scanning along a path resembling a parametric curve or another, arbitrary piecewise parametric curve. In another embodiment, the previous layer is not remelted, thus creating an oxide film that acts as a clean stop to prevent unwanted downward growth.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: January 13, 2004
    Assignee: Board of Regents, University Texas System
    Inventors: Suman Das, Joseph J. Beaman
  • Patent number: 6676893
    Abstract: The presently claimed invention relates to a method of making a PcBN cutting tool insert. The method includes the following steps: mixing raw material powders, (e.g., cBN, hBN, TiC, TiN, Ti(C,N), WC, W, C, Co, Co2Al9, Al AlN, Al2O3) with a liquid (e.g., ethanol) and an agent (e.g., polyethylene glycol, PEG) to form a homogeneous slurry with the desired composition; forming spherical powder agglomerates, typically 100 &mgr;m in diameter, preferably by spray drying; pressing said agglomerates to form a body of desired dimensions and density using conventional tool pressing technology; removing the agent from the powder at a suitable temperature and atmosphere; raising the temperature to 1000-1350° C. in vacuum; solid state sintering the body at 1000-1350° C. in vacuum, for 1-90 minutes to form a body with 35-55 vol % porosity; optionally, adding 0.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 13, 2004
    Assignee: Sandvik AB
    Inventors: Ulf Rolander, Gerold Weinl
  • Patent number: 6676891
    Abstract: An armature segment of an electrical machine includes a coil and a core section. A method of producing such a segment comprises the steps of tightly winding the coil, providing a compaction die having a cavity for shaping the tightly wound coil, introducing the tightly wound coil into the compaction die and compacting the coil therein so as to reduce the volume occupied by the coil, providing a compression-moulding die having a moulding cavity, positioning the compacted coil in the moulding cavity of the compression die, filling the moulding cavity with insulated ferromagnetic particles, and compressing the insulated ferromagnetic particles in the moulding cavity so as to form the armature segment as a single-piece unit including the core section and the compacted coil.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 13, 2004
    Assignee: Höganäs AB
    Inventor: Alan G. Jack
  • Patent number: 6676895
    Abstract: A method is provided for manufacturing an object, such as, for example, a form tool used for forming threaded fasteners. The method utilizes metal injection molding technology and processes to form densified parts having at least the near net shape of the desired object.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: January 13, 2004
    Inventor: Michael L. Kuhns
  • Patent number: 6673307
    Abstract: The present invention relates to a method of making a cemented carbide by mixing powder of WC and possibly other powders forming hard constituents and binder phase and pressing agent, drying, pressing and sintering whereby; the mixing is wet mixing with no change in grain size or grain size distribution of the hard constituent powders; the WC grains are coated with binder metal and deagglomerated prior to the mixing. The sintering is made by microwave sintering at 1325-1410° C. with a holding time of 5-15 min. As a result a cemented carbide with improved properties is obtained.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Sandvik AB
    Inventors: Mikael Lindholm, Mats Waldenström, Mats Ahlgren