Patents Examined by Daniel J. Jenkins
  • Patent number: 6635357
    Abstract: The lightweight bulletproof metal matrix macrocomposites (MMMC) contain (a) 10-99 vol. % of permeable skeleton structure of titanium, titanium aluminide, Ti-based alloys, and/or mixtures thereof infiltrated with low-melting metal selected from Al, Mg, or their alloys, and (b) 1-90 vol. % of ceramic and/or metal inserts positioned within said skeleton, whereby a normal projection area of each of said inserts is equal to or larger than the cross-section area of a bullet or a projectile body. The MMMC are manufactured as flat or solid-shaped, double-layer, or multi-layer articles containing the same inserts or different inserts in each layer, whereby insert projections of each layer cover spaces between inserts of the underlying layer. The infiltrated metal contains 1-70 wt. % of Al and Mg in the balance, optionally, alloyed with Ti, Si, Zr, Nb, V, as well as with 0-3 wt. % of TiB2, SiC, or Si3N4 sub-micron powders, to promote infiltrating and wetting by Al-containing alloys.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 21, 2003
    Inventors: Vladimir S. Moxson, Eugene Ivanov
  • Patent number: 6635120
    Abstract: A sintered rare earth magnet is produced by finely pulverizing a coarse rare earth magnet alloy powder to an average particle size of 1-10 &mgr;m in a non-oxidizing atmosphere; introducing the resultant fine rare earth magnet alloy powder into a non-oxidizing liquid comprising at least one oil selected from the group consisting of mineral oils, synthetic oils and vegetable oils, and at least one lubricant selected from the group consisting of esters of aliphatic acids and monovalent alcohols, esters of polybasic acids and monovalent alcohols, esters of aliphatic acids and polyvalent alcohols and their derivatives to prepare a slurry; molding the slurry; degreasing the resultant green body; sintering the degreased green body; and then heat-treating the green body.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: October 21, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hisato Tokoro, Kimio Uchida
  • Patent number: 6635099
    Abstract: This invention provides a process for forming sintered, molded articles having improved dimensional stability. More particularly, this invention pertains to process for forming heat sinks. This process includes forming a substantially uniform copper composition comprising a polysaccharide binder, water, and copper particles; molding the copper composition under conditions sufficient to form a solid molded intermediate; and sintering the solid molded intermediate at a sufficient temperature and for a sufficient time to form a heat sink.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: October 21, 2003
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Jerry C. LaSalle, Mohammad Behi, George A. Glandz, Joan V. Burlew
  • Patent number: 6630036
    Abstract: An object of the present invention is to provide a novel flux, which has sufficient cleaning performance and tolerates to be used under a high flex temperature when used for so-called Pb-free solder, such as Sn—Ag or Sn—Ag—Bi based solder, and which causes no deterioration of material or no disorder in durability and; the soldering flux of the present invention is a soldering flux, in which abietic acid, the main component of rosin, is used as a main base material component, and a solid acid compound, in which a halide ion is not a constituent element, is used as the inorganic component having a function to enhance the flux activity which is added and dispersed in said rosin-based base material.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: October 7, 2003
    Assignee: Advatest Corporation
    Inventors: Keiko Saita, Masao Watanabe
  • Patent number: 6630009
    Abstract: A paste composition, including a binding agent charged with metallic powder, to be used in a solid freeform fabrication procedure, comprising: a) a solidifiable binding agent comprised of at least one polymerizable resin, with a viscosity of less than 4000 mPa.s, measured at 25° C.; b) at least one initiator, in a concentration greater than about 0.1% by mass with respect to the mass of the resin; and c) a mixture of at least two metallic powders, said mixture having a volumetric concentration greater than 40% with respect to the composition, wherein said mixture of metal powders is either i) a bimodal or trimodal mixture in nature, or ii) is a majority of stainless steel with an amount of NiB or NiP and combinations thereof effective to lower the sintering temperature.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: October 7, 2003
    Assignee: 3D Systems, Inc.
    Inventors: Khalil M. Moussa, Kenneth J. Newell, Catherine Hinczewski, Charles H. Zenuk
  • Patent number: 6630008
    Abstract: Objects comprising carbide particulate having pressure consolidated nanocrystalline coating material are formed. Oxides of the coating material, in particulate form, may become dispersed in the pressure consolidated object, thereby increasing its strength.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: October 7, 2003
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, III, Marc S. Fleming
  • Patent number: 6630101
    Abstract: A method of producing a gear from a metallurgical powder includes molding at least a portion of the powder to provide a gear preform. The gear preform is sintered and hot formed, and subsequently may be carburized. The gear preform is resintered and cooled at a cooling rate suitable to provide a bainitic microstructure in at least a surface region of the preform. The gear teeth of the preform may be shaved to, for example, adjust dimensions, and enhance dimensional uniformity.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 7, 2003
    Assignee: Keystone Investment Corporation
    Inventors: Gary L. Anderson, William J. Olson
  • Patent number: 6623542
    Abstract: The slide member 5 slidably guided on the outer peripheral surface of a shaft is formed by adding 10-50% by volume of thermosetting resin to a metal powder consisting mainly of copper powder, iron powder or a mixture thereof and sintering the same at temperatures not less than the sintering temperature of the metal powder.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: September 23, 2003
    Assignee: NTN Corporation
    Inventors: Atsuko Yamashita, Yoshinori Itou, Fuminori Satoji
  • Patent number: 6620261
    Abstract: Flux cored wire for dual stainless steel having flux filled into a stainless steel sheath of the invention, the flux contains, with respect to the total weight of the wire: 0.02 to 0.10 wt % C; 0.10 to 1.0 wt % Si; 1.0 to 3.0 wt % Mn, 15 to 35 wt % Cr, 7.0 to 12.0 wt % Ni; 1.5 to 3.5 wt % Mo, 0.02 to 0.2 wt % N; 0.02 to 0.2 wt % Nb; and 0.5 to 5.6 wt % slag forming agent. The components composing the flux cored wire satisfy the following equations of: 1.5≦{(Cr+Mo+1.5Si+0.5Nb)/(Ni+0.5Mn+30C+30N)}≦2.3 and 25≦PREN (Cr+3.3Mo+16N)≦45. The welding wire of the invention forms the suitable weld metal in welding the dual phase structure stainless steel instead of the single phase steel so that remarkable effects can be expected in welding equipments of the sea water resistant austenitic-ferritic stainless steel which are used for various apparatuses for the chemical industry.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: September 16, 2003
    Inventors: Jong-won Kim, Sunil Lee
  • Patent number: 6620522
    Abstract: A metal bonded drilling tool which is improved in grinding performance with a long life and can drill a hole in a dry condition without the need for water. The metal bonded drilling tool includes a cylindrical body having an open front end portion, a shank integral with the cylindrical body and having a threaded hole for use in mounting the tool to a rotary tool, and numerous abrasive grains bonded to a front edge of the cylindrical body and to inner and outer cylindrical surfaces of the front end portion of the cylindrical body by a bond member formed primarily of copper alloy.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: September 16, 2003
    Assignee: Tenryu Seikyo Kabushiki Kaisha
    Inventors: Yoshikazu Kusachi, Akihiko Nakagawa
  • Patent number: 6620375
    Abstract: Disclosed is a method of making a composite diamond having a cutting edge comprising a diamond compact bonded to a cemented carbide substrate, the diamond compact having a working surface, an edge of which provides the cutting edge, wherein the diamond compact comprises a first phase containing a polycrystalline mass of diamond particles and a second phase containing a diamond catalyst/solvent and ruthenium, which method includes the steps of providing a cemented carbide substrate, providing a layer of diamond particles on a surface of the substrate, providing a source of diamond catalyst/solvent and ruthenium, wherein the source of the diamond catalyst/solvent and ruthenium is the cemented carbide substrate.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: September 16, 2003
    Inventors: Klaus Tank, Noel John Pipkin, Johan Myburgh
  • Patent number: 6620376
    Abstract: A soft magnetic material, and a method for manufacturing it, which is suitable, e.g., for use in solenoid valves is described. The individual powder particles of a metallic powdery initial component are equipped superficially at least largely with a high-resistance surface layer and the powder particles are densified into the material. Upon densification of the powdery metallic initial component into the soft magnetic material, the surface layers of the powder particles are additionally at least locally welded to one another. Welding can be achieved using shock densification.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: September 16, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Hans-Peter Koch, Andreas Harzer
  • Patent number: 6616725
    Abstract: A self-grown monopoly compact grit and high pressure, high temperature process for preparing the same. The high pressure, high temperature sintered/synthesized monopoly compact grit is used in various industrial tools such as saw blades, grinding wheels, cutting tools and drill bits. Further, the monopoly compact grit of the present invention is produced from a seed of a mono-crystal of diamond or cubic boron nitride surrounded by either a self-grown crystal layer or an integrally bonded poly-crystalline sintered compact layer. The self-grown crystal layer is a new grown crystal structure where the seed crystal grows into a new phase through a normal diamond or cubic boron nitride synthesis process in the presence of a catalyst metal solvent.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: September 9, 2003
    Inventors: Hyun Sam Cho, John Chen, Kyung Yul Han
  • Patent number: 6617043
    Abstract: The dental bonding material of the present invention comprises a composition of precious metal particles consisting essentially of high fusing temperature metal particles having a melting temperature above at least about 1200° C. in a size range between 1 micron and 150 microns and low fusing temperature metal particles having a melting temperature below about 1080° C. with or without a suitable carrier for coating or brushing the dental bonding material upon the surface of a metal framework or coping. The dental bonding material may further include a conventional flux preferably containing the element boron in a concentration of between 0 and 5% by weight of the dental material. It is essential to heat treat the bonding-material after it is coated on the metal surface at a temperature below the melting temperature of the high fusing temperature metal particles and high enough to cause a partial melting of the low fusing temperature metal particles but not a complete melting thereof.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: September 9, 2003
    Inventors: Itzhak Shoher, Aharon E Whiteman
  • Patent number: 6613462
    Abstract: A consolidated complex shaped article having a density of at least about 95 percent of theoretical density is prepared by placing a plurality of separate bodies in an arrangement, such that each separate body is in contact with at least one other separate body to form an aggregate body and wherein at least one of the separate bodies is essentially dense. The material of each separate body is comprised of a ceramic, a cermet or a metal. The aggregate body is then consolidated at a consolidating temperature, superatmospheric pressure and time at temperature and time at superatmospheric pressure sufficient to form a consolidated shaped article. In consolidating the aggregate body, the consolidating temperature is a temperature that fails to form a liquid within at least one separate body and the superatmospheric temperature is applied for at least a portion of the time at the consolidating temperature.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: September 2, 2003
    Assignee: Dow Global Technologies Inc.
    Inventors: James M. Macki, Eric A. Ness, Robert T. Nilsson, Ellen M. Dubensky, Walter J. Rozmus, Jr., Clifford A. Kelto, Edward E. Timm
  • Patent number: 6613273
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: September 2, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Gregg Daskalon, Arun Prasad, Denise L. North, Elie Zammarieh
  • Patent number: 6610244
    Abstract: The invention relates to a method for connecting a metallic support element to at least one body consisting of a powder metallurgical sintered material. The method is characterised in that said body is brought into contact with the support element in the form of a green body which is compacted from a sintered powder, in that a thin, flat copper body is brought into contact with the green body respectively and in that the entire resulting arrangement is heated to the temperature required to sinter the green body before being cooled again once the sintering process is complete.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: August 26, 2003
    Assignee: GKN Sinter Metals GmbH
    Inventors: Klaus Dollmeier, Jens Wahnschaffe
  • Patent number: 6610246
    Abstract: A powder material is put into a cylindrical mold and electrodes are brought into contact with the side surface of the mold and a current is applied to sinter the material in the mold while a pressure is applied to the material. In this process, local temperature difference is kept as small as possible. A pair of electrodes are brought into contact with the side circumferential surface of a cylindrical mold (25) filled with a powder material (28) to which a pressure is applied and a current is applied to the mold (25) to heat the powder material (28) in the mold (25) and a sintered body is obtained. In order to sinter the material by the current application through the pair of electrodes, two pairs of electrodes (19a, 19b, 19c, 19d) which face each other are all brought into contact with the side surface of the mold (25) and the current is supplied through the electrodes (19) alternately.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: August 26, 2003
    Assignee: Akane Co., Ltd.
    Inventor: Kenichi Sunamoto
  • Patent number: 6607692
    Abstract: A first metal powder having a density greater than the density of lead is mixed with a second metal powder having a density not greater than the density of lead and a matrix micronized polymeric powder which is itself a poor electrical conductor but susceptible to accumulation of an electrostatic charge thereon during handling and/or transportation thereof. The mixing of these metal powders and the micronized polymeric powder is performed under conditions which maintain, promote or enhance the electrostatic environment within a mixing vessel with the result that the metal and nonmetal powders become substantially uniformly distributed throughout the mixture, and retain their uniform distribution after removal from the mixing vessel, and carry forward such uniform distribution into and throughout subsequent conversion of the mixture into ammunition projectiles without the heavy and light metal powder particulates separating, according to their respective densities, into semi-layers or strata.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: August 19, 2003
    Assignee: Doris Nebel Beal Intervivos Patent Trust
    Inventor: Harold F. Beal
  • Patent number: 6607576
    Abstract: The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, ≦1% Cr and either ≧0.05% Zr or Zro2 stringers extending perpendicular to an exposed surface of the heating element or ≧0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, ≦2% Ti, ≦2% Mo, ≦1% Zr, ≦1% C, ≦0.1% B. ≦30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, ≦1% rare earth metal, ≦1% oxygen, ≦3% Cu, balance Fe.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: August 19, 2003
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Vinod K. Sikka, Seetharama C. Deevi, Grier S. Fleischhauer, Mohammad R. Hajaligol, A. Clifton Lilly, Jr.