Patents Examined by Dave Mattison
  • Patent number: 11757355
    Abstract: The present invention is directed to electrical circuits. According to an embodiment, the present invention provides a charge pump circuit with a bias section and a switch section. The switch section includes a first switch coupled to an early signal and a second switch coupled to a late signal. The charge pump additionally includes a low-pass filter. The switch section includes a first resistor and a second resistor. The first resistor is directly coupled to the first switch and the low-pass filter. The second resistor is directly coupled to the second switch and the first resistor. There are other embodiments as well.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: September 12, 2023
    Assignee: Marvell Asia Pte, Ltd.
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra
  • Patent number: 11736036
    Abstract: An electric power converter includes a plurality of switch pairs respectively corresponding to a plurality of phases and each consisting of an upper-arm switch and a lower-arm switch. Each of the lower-arm switches of the switch pairs has a first terminal, a second terminal and a gate. The electric power converter further includes: a voltage generation circuit having its positive electrode side connected to the second terminal of only one of the lower-arm switches of the switch pairs; a negative-electrode-side electrical path connected to a negative electrode side of the voltage generation circuit; and at least one capacitor having a first end connected to the second terminal of one of the remainder of the lower-arm switches of the switch pairs, which is not connected with the voltage generation circuit, and a second end connected to the negative-electrode-side electrical path.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: August 22, 2023
    Assignee: DENSO CORPORATION
    Inventors: Akira Tokumasu, Yousuke Watanabe
  • Patent number: 11728802
    Abstract: A drive circuit includes a plurality of first control wirings, a plurality of first balance resistors, a first common wiring, a first switch, a plurality of second control wirings, a plurality of second balance resistors, a second common wiring, a second switch, a sensor configured to detect a fault in controlled switches, and a controller configured to control opening and closing of the first switch when the sensor detects no fault, and control opening and closing of the second switch when the sensor detects the fault.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: August 15, 2023
    Assignee: DENSO CORPORATION
    Inventor: Yosuke Watanabe
  • Patent number: 11705802
    Abstract: An integrated circuit for a power supply circuit that includes a transformer and a transistor controlling an inductor current flowing through a primary winding of the transformer. The integrated circuit includes a terminal receiving a voltage corresponding to the voltage of a secondary winding of the transformer when the transistor is in an off-state, a first detection circuit detecting that the inductor current is smaller than a first current value, and a determination circuit determining whether an AC voltage applied to the primary winding of the transformer is a first or second AC voltage, both based on the received voltage in the off-state of the transistor. The integrated circuit is configured to drive the transistor in response to a detection result of the first detection circuit, a determination result of the determination circuit, and an output voltage of the power supply circuit generated from the AC voltage.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: July 18, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Hiroki Yamane
  • Patent number: 11689194
    Abstract: The present disclosure relates to a power supply device for a protective relay. The power supply device comprises a power circuit for supplying a power to the control circuit, wherein the power circuit includes: a semiconductor switch element having an input terminal connected to a first node for receiving a direct current, and an output terminal connected to a reference node, wherein the reference node has a voltage lower than a voltage of the first node; and a first voltage drop element disposed between the first node and a second node, wherein the second node is connected to a switching terminal of the semiconductor switch element.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: June 27, 2023
    Assignee: LS ELECTRIC CO., LTD.
    Inventor: Young-Joo Lee
  • Patent number: 11677390
    Abstract: This disclosure describes apparatuses, methods, and techniques for implementing a multimode frequency multiplier. In example implementations, an apparatus for generating a frequency includes a multimode frequency multiplier. The multimode frequency multiplier includes a multiphase generator and a reconfigurable frequency multiplier. The multiphase generator is configured to produce a first signal including multiple phase components and having a first frequency. The reconfigurable frequency multiplier is coupled in series with the multiphase generator. The reconfigurable frequency multiplier is configured to produce a second signal based on the first signal and having a second frequency that is a multiple of the first frequency.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: June 13, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Yan Zhang, Yunliang Zhu, Yiwu Tang
  • Patent number: 11671090
    Abstract: Methods and devices to reduce gate induced drain leakage current in RF switch stacks are disclosed. The described devices utilize multiple discharge paths and/or less negative body bias voltages without compromising non-linear performance and power handling capability of power switches. Moreover, more compact bias voltage generation circuits with smaller footprint can be implemented as part of the disclosed devices.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: June 6, 2023
    Assignee: PSEMI CORPORATION
    Inventor: Alper Genc
  • Patent number: 11652461
    Abstract: A transistor device includes a transistor cell comprising a channel region, a gate runner that is electrically connected to a gate electrode on the channel region and physically separated from the gate electrode, and a harmonic termination circuit electrically connected to the gate runner between the gate electrode and an input terminal of the transistor device, the harmonic termination circuit configured to terminate signals at a harmonic frequency of a fundamental operating frequency of the transistor device.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: May 16, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: Frank Trang, Zulhazmi Mokhti, Guillaume Bigny
  • Patent number: 11646738
    Abstract: The present invention provides a processor including a core circuit, a plurality of clock signal generation circuits, a multiplexer and a detection circuit is disclosed. The core circuit is supplied by a supply voltage. The plurality of clock signal generation circuits are configured to generate a plurality of clock signals with different frequencies, respectively, wherein a number of the plurality of clock signals is equal to or greater than three. The multiplexer is configured to receive the plurality of clock signals, and to select one of the plurality of clock signals to serve as an output clock signal according to a control signal, wherein the core circuit uses the output clock signal to serve as an operating clock. The detection circuit is configured to detect a level of the supply voltage received by the core circuit in a real-time manner, to generate the control signal.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: May 9, 2023
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chao-Min Lai, Han-Chieh Hsieh, Tang-Hung Chang, Hung-Wei Wang, Chun-Yi Kuo
  • Patent number: 11646733
    Abstract: In an embodiment, a digital output driver circuit comprises an output stage having first and second transistors. A drive stage is configured to drive control terminals of the first and second transistors and comprising switching circuitry and current generator circuitry. In a first configuration, the driver circuit is configured to connect a control terminal of the second transistor to the reference node to turn off the second transistor; and connect a first capacitance to the current generator circuitry and to a control terminal of the first transistor to turn on the first transistor. In a second configuration, the driver circuit is configured to turn off the first transistor and connect the control terminal of the second transistor to the current generator circuitry and to the second capacitance to turn on the second transistor.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: May 9, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventor: Andrea Agnes
  • Patent number: 11626873
    Abstract: An off chip driver circuit includes a pull-up circuit and a pull-down circuit. The pull-up circuit includes several first transistors and a first resistance circuit coupled between the first transistors and a input/output pad. The first transistors generate a first voltage to the first resistance circuit. The first resistance circuit transmits, in response to a first control signal, the first voltage to the input/output pad and to have a variable resistance according to the first control signal. The pull-down circuit includes several second transistors and a second resistance circuit coupled between the second transistors and the input/output pad. The second transistors generate a second voltage to the second resistance circuit. The second resistance circuit transmits, in response to a second control signal, the second voltage to the input/output pad and to have a variable resistance according to the second control signal.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: April 11, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chang-Ting Wu
  • Patent number: 11552550
    Abstract: A voltage balance circuit including first and second semiconductor devices connected in series with each other is provided with a first transformer having a primary winding and a secondary winding, a second transformer having a primary winding and a secondary winding. A pair of capacitors connected in series with each other and connected between the output terminals of the plurality of semiconductor devices. A first control signal is applied to the control electrode of the first semiconductor device via the primary winding of the first transformer. A second control signal is applied to the control electrode of the second semiconductor device via the primary winding of the second transformer, with one end of each secondary winding connected to each other.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 10, 2023
    Assignee: OMRON CORPORATION
    Inventors: Noriyuki Nosaka, Wataru Okada, Chen Chen, Takanori Ishii
  • Patent number: 11552640
    Abstract: The redundancy control device includes three controllers that output status signals, a majority voting circuit to which a first voltage or a second voltage is supplied as an output signal through an output line of each controller, a switch provided in each output line, a voltage supply unit provided for each output line to supply the second voltage to the output line when the first voltage is lost, a latch circuit provided for each output line to latch the second voltage when the second voltage is supplied thereto and continue to output the second voltage, a comparison circuit provided for each controller to output a comparison signal based on a comparison of the status signals, and a switch control unit provided for each switch to outputs a switch signal to the switch in response to the comparison signal from the comparison circuit.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: January 10, 2023
    Assignee: NABTESCO CORPORATION
    Inventors: Takayuki Jinno, Takashi Ogawa
  • Patent number: 11533053
    Abstract: Various embodiments relate to an amplitude shift keying (ASK) demodulator for demodulating an input signal, including: a frequency filter configured to receive the input signal, wherein the frequency filter includes adjustable components configured to adjust the frequency response of the frequency filter; a rectifier configured to rectify an output of the frequency filter, wherein the rectifier includes an adjustable current source configured to adjust the current consumption of the rectifier; a reference signal generator configured to produce a reference signal; a current to voltage converter configured to convert the current of the rectified signal to a rectified voltage and to convert the current of the reference signal to a reference voltage; and a comparator configured to compare the rectified voltage to the reference voltage and to produce a demodulated output signal.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: December 20, 2022
    Assignee: NXP B.V.
    Inventors: Siamak Delshadpour, Xiaoqun Liu, Steven Daniel
  • Patent number: 11513543
    Abstract: A drive-sense circuit coupled to a variable impedance load. The drive-sense circuit includes a voltage reference circuit operable to generate a voltage reference signal. The drive-sense circuit further includes a regulated current source circuit operable to generate a regulated current signal based on an analog regulation signal, where the regulated current signal is provided on a line to the variable impedance load to keep a load voltage on the line substantially matching the voltage reference signal, and where an impedance of the variable impedance load affects the regulated current signal. The drive-sense circuit further includes a current loop correction circuit operable to generate a comparison signal based on the voltage reference signal and the load voltage, where the comparison signal represents the impedance, and where the analog regulation signal is representative of the comparison signal.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: November 29, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11496120
    Abstract: A flip-flop with glitch protection is disclosed. The flip-flop includes a differential amplifier circuit that generates amplifier output signals based on an input data and clock signals and precharges a true data node when a clock signal is inactive. A latch circuit is coupled to the differential amplifier and includes a latch node. Responsive to a current value of the input data signal having a first logic state, the latch node is set at a logic value equivalent to the precharged value during an active phase of the clock signal. Responsive to the current value of the input data signal having a second logic state complementary to the first, during the active phase of the clock signal, the latch circuit causes the latch node to be set to a logic value complementary to the precharged value, using the clock signal and the current value of the input data signal.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: November 8, 2022
    Assignee: Apple Inc.
    Inventors: Qi Ye, Ajay Bhatia, Vivekanandan Venugopal
  • Patent number: 11476748
    Abstract: A method for controlling a resonance type power converter including a first resonance circuit (L0, C0) and a shunt circuit (3), which converts and outputs the power of the DC power supply, shunting a current flowing into a first capacitor (CS) by controlling a second switching element (S2) during a predetermined period within turn-off period of a first switching element (S1), the first capacitor connected in parallel to the first switching element (S1), the second switching element (S2) included in the shunt circuit (3), and the first switching element (S1) operated in response to the resonance of the first resonance circuit (L0, C0).
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: October 18, 2022
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Toshihiro Kai, Kousuke Saito, Shigeharu Yamagami, Keisuke Inoue, Kraisorn Throngnumchai
  • Patent number: 11476776
    Abstract: A voltage-controlled delay buffer includes a plurality of inverters configured in a cascade topology to receive an input signal from a source circuit and output an output signal to an output circuit. The plurality of inverters includes a voltage-controlled inverter controlled by a control signal having a first voltage and a second voltage. The voltage-controlled inverter includes a PMOS transistor configured to assist a low-to-high transition of an outgoing signal, and an NMOS transistor configured to assist a high-to-low transition of the outgoing signal. Two varactors, one forward connected and the other backward connected are configured to adjust a delay of a transition of an incoming signal. Another two varactors, one forward connected and the other backward connected, configured to adjust a delay of a transition of the outgoing signal in accordance with the first voltage and the second voltage.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 18, 2022
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventor: Chia-Liang (Leon) Lin
  • Patent number: 11476846
    Abstract: According to one embodiment, a drive control circuit includes a first transistor that supplies a current to a gate of an output transistor in response to a drive signal, a second transistor that supplies a current to a capacitor in response to the drive signal, a comparison circuit that compares a gate voltage of the output transistor and a voltage of the capacitor, a control signal generation circuit that generates a control signal in response to an output signal of the comparison circuit and the drive signal, and a third transistor that supplies a current to a gate of the output transistor in response to the control signal.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: October 18, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Yuichi Sawahara, Hideaki Majima
  • Patent number: 11469757
    Abstract: Systems, methods, techniques and apparatuses of power switches are disclosed. One exemplary embodiment is a power switch comprising a first semiconductor device and a second semiconductor device coupled together in a first anti-series configuration between a first terminal and a second terminal; a third semiconductor device and a fourth semiconductor device coupled together in a second anti-series configuration between the first terminal and the second terminal; a controller configured to operate the power switch to simultaneously conduct a first portion of a load current from the first terminal to the second terminal by closing the first semiconductor device and the second semiconductor device, and to conduct a second portion of the load current from the first terminal to the second terminal by closing the third semiconductor device and the fourth semiconductor device.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 11, 2022
    Assignee: ABB SCHWEIZ AG
    Inventors: Pietro Cairoli, Eddy Aeloiza, Xiaoqing Song