Patents Examined by David Goodwin
  • Patent number: 10032749
    Abstract: An integrated circuit device is disclosed that includes a semiconductor substrate and a die attached to the semiconductor substrate. A conductive pillar is connected to at least one of the semiconductor substrate or the die. An overmold is molded onto the semiconductor substrate over the die, and the conductive pillar extends through the overmold.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 24, 2018
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Amit S. Kelkar, Karthik Thambidurai, Viren Khandekar, Hien D. Nguyen
  • Patent number: 10014326
    Abstract: A method for fabricating an array substrate, an array substrate and a display device are provided. The method for fabricating the array substrate includes: forming a spacer layer on the array substrate, the spacer layer is disposed under a planarized layer and corresponds to a location of a via hole in the planarized layer, wherein the planarized layer is formed of a hot melt material.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: July 3, 2018
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Xiaodan Wei, Xingqiang Zhang, Zhong Lu, Dongkoog Jang
  • Patent number: 9997420
    Abstract: One or more methods or systems for performing chemical mechanical planarization (CMP) are provided. The system includes at least one of an emitter, a detector, a spectroscopic signal generator, a comparator, a spectral library, a controller or a CMP device. A spectroscopic signal is generated and is used to determine the thickness of a first material formed on or from a wafer by comparing the spectroscopic signal to a spectral library. Responsive to the thickness not being equal to the desired thickness, the controller instructs the CMP device to perform a rotation to reduce the thickness of the first material. The system and method herein increase the sensitivity of the CMP, such that the thickness of the first material is reduced with greater accuracy and precision, as compared to where the thickness is not measured between consecutive rotations of a wafer.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: June 12, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yen-Di Tsen, Cheng Yen-Wei, Jong-I Mou
  • Patent number: 9991278
    Abstract: According to an embodiment, a non-volatile memory device includes first electrodes stacked on an underlying layer, a second electrode provided on the first electrodes, a semiconductor layer extending in a first direction from the underlying layer to the second electrode, and a memory film provided between each of the first electrodes and the semiconductor layer. The semiconductor layer includes a first portion adjacent to the first electrodes and a second portion adjacent to the second electrode. The second portion has a thickness thinner than a thickness of the first portion in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: June 5, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Takashi Ishida, Yoshiaki Fukuzumi, Takayuki Okada, Masaki Tsuji
  • Patent number: 9985002
    Abstract: The stack package includes a substrate body layer having a top surface and a bottom surface, first circuit patterns disposed on the bottom surface of the substrate body layer, second circuit patterns disposed on the top surface of the substrate body layer, a first semiconductor chip including first bumps, and a second semiconductor chip including second bumps. The first bumps extend through the substrate body layer to be electrically coupled to the first circuit patterns, and the second bumps extend past sidewalls of the first semiconductor chip to be electrically coupled to the second circuit patterns. The second semiconductor chip is stacked on the first semiconductor chip.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 29, 2018
    Assignee: SK hynix Inc.
    Inventor: Sang Yong Lee
  • Patent number: 9983257
    Abstract: The present disclosure relates to a substrate having test line letters that are used to identify a test line on an integrated chip, while avoiding contamination of high-k metal gate processes, and a method of formation. In some embodiments, an integrated chip is disclosed. The integrated chip has a semiconductor substrate. A test line letter is arranged over the semiconductor substrate. The test line letter comprises a positive relief that protrudes outward from the semiconductor substrate in the shape of an alpha-numeric character. One or more dummy structures are arranged over the semiconductor substrate. The one or more dummy structures are proximate to a boundary of the test line letter.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei Cheng Wu, Jui-Tsung Lien, Fang-Lan Chu, Hong-Da Lin, Ku-Ning Chang, Yu-Chen Wang
  • Patent number: 9985184
    Abstract: An optoelectronic device comprises a substrate; a groove on the substrate; a plurality of semiconductor units on the substrate and separated by the groove, wherein each semiconductor unit comprises a first semiconductor layer, a second semiconductor layer, and an active region interposed between the first semiconductor layer and the second semiconductor layer; a connecting part crossing the groove for connecting two of the plurality of semiconductor units, wherein the connecting part comprises one end on the first semiconductor layer and another end on the second semiconductor layer; a first electrode comprising a plurality of first extensions jointly connected to the one end of the connecting part; and a second electrode comprising a plurality of second extensions jointly connected to the another end of the connecting part, wherein an amount of the plurality of first extensions is different from an amount of the plurality of second extensions.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: May 29, 2018
    Assignee: EPISTAR CORPORATION
    Inventors: Chang-Huei Jing, Chien-Fu Shen
  • Patent number: 9972644
    Abstract: The present invention provides a semiconductor device and a method of forming the same, and the semiconductor device including a substrate, an oxide semiconductor layer, two source/drain regions, a high-k dielectric layer and a bottom oxide layer. The oxide semiconductor layer is disposed on a first insulating layer disposed on the substrate. The source/drain regions are disposed on the oxide semiconductor layer. The high-k dielectric layer covers the oxide semiconductor layer and the source structure and the drain regions. The bottom oxide layer is disposed between the high-k dielectric layer and the source/drain regions, wherein the bottom oxide layer covers the source/drain regions and the oxide semiconductor layer.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: May 15, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Fu Hsu, Chun-Yuan Wu
  • Patent number: 9966425
    Abstract: A method for fabricating a metal-insulator-metal (MIM) capacitor includes the steps of: forming a capacitor bottom metal (CBM) layer on a material layer; forming a silicon layer on the CBM layer; forming a capacitor dielectric layer on the silicon layer; and forming a capacitor top metal (CTM) layer on the capacitor dielectric layer.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 8, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jen-Po Huang, Chin-Fu Lin, Bin-Siang Tsai, Xu Yang Shen, Seng Wah Liau, Yen-Chen Chen, Ko-Wei Lin, Chun-Ling Lin, Kuo-Chih Lai, Ai-Sen Liu, Chun-Yuan Wu, Yang-Ju Lu
  • Patent number: 9960251
    Abstract: An ESD protection structure comprising a first semiconductor region of a first doping type, a second semiconductor region of the first doping type, a semiconductor structure of a second doping type opposite to the first doping type formed to provide lateral isolation between the first and second semiconductor regions of the first doping type, and a first contact region of the second doping type formed within a surface of the second semiconductor region. A thyristor structure is formed within the ESD protection structure comprising the first contact region of the second doping type, the second semiconductor region of the first doping type, the semiconductor structure of the second doping type, and the first semiconductor region of the first doping type. Wherein no contact region is formed within a surface of the semiconductor structure of the second doping type between the first and second semiconductor regions of the first doping type.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 1, 2018
    Assignee: NXP USA, Inc.
    Inventors: Jean Philippe Laine, Patrice Besse
  • Patent number: 9953885
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate including a top surface; forming a first insulation region and a second insulation region in the semiconductor substrate; and recessing the first insulation region and the second insulation region. Top surfaces of remaining portions of the first insulation region and the second insulation region are flat surfaces or divot surfaces. A portion of the semiconductor substrate between and adjoining removed portions of the first insulation region and the second insulation region forms a fin.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng Yuan, Tsung-Lin Lee, Hung-Ming Chen, Chang-Yun Chang
  • Patent number: 9954083
    Abstract: A method of introducing strain in a channel region of a FinFET device includes forming a fin structure on a substrate, the fin structure having a lower portion comprising a sacrificial layer and an upper portion comprising a strained semiconductor layer; and removing a portion of the sacrificial layer corresponding to a channel region of the FinFET device so as to release the upper portion of the fin structure from the substrate in the channel region.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Patent number: 9947699
    Abstract: A method for manufacturing a dual gate oxide semiconductor TFT substrate utilizes a halftone mask to implement a photo process, which not only accomplishes patterning to an oxide semiconductor layer but also obtains an oxide conductor layer with ion doping. The method implements patterning to a bottom gate isolation layer and a top gate isolation layer at the same time with one photolithographic process. The method implements patterning to second and third metal layers at the same time to obtain a first source, a first drain, a second source, a second drain, a first top gate and a second top gate with one photolithographic process. The method implements patterning to a second flat layer, a passivation layer and a top gate isolation layer at the same time with one photolithographic process. The number of photolithographic processes involved is reduced to nine so as to simplify the manufacturing process.
    Type: Grant
    Filed: July 16, 2017
    Date of Patent: April 17, 2018
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Shimin Ge, Hejing Zhang, Chihyuan Tseng, Chihyu Su, Wenhui Li, Longqiang Shi, Xiaowen Lv
  • Patent number: 9941471
    Abstract: A method for manufacturing a PCRAM memory includes forming in a first dielectric layer arranged on a substrate, which includes bottom electrodes, a first rectilinear trench opening onto the set of electrodes; depositing a first active layer in the first trench, such that the first active layer is in electrical contact with the electrodes; covering the first active layer with a second dielectric layer; etching, in the second and second dielectric layers and the first active layer, additional rectilinear trenches oriented perpendicularly to the first trench, to obtain a group of memory devices each including a portion of the first active layer in electrical contact with one of the electrodes; filling the additional trenches with a sacrificial dielectric material; performing an anisotropic etching of the sacrificial material to expose a side surface of each portion of the first active layer; and covering the side surface with a second active layer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: April 10, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Gabriele Navarro
  • Patent number: 9935005
    Abstract: A method of device processing. The method may include providing a cavity in a layer, directing energetic flux to a bottom surface of the cavity, performing an exposure of the cavity to a moisture-containing ambient, and introducing a fill material in the cavity using an atomic layer deposition (ALD) process, wherein the fill material is selectively deposited on the bottom surface of the cavity with respect to a sidewall of the cavity.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: April 3, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Kurtis Leschkies, Steven Verhaverbeke
  • Patent number: 9923000
    Abstract: The number of manufacturing steps is reduced to provide a semiconductor device with high productivity and low cost. A semiconductor device with low power consumption and high reliability is provided. A photolithography process for forming an island-shaped semiconductor layer is omitted, and a semiconductor device is manufactured through at least four photolithography processes: a step for forming a gate electrode (including a wiring or the like formed from the same layer), a step for forming a source electrode and a drain electrode (including a wiring or the like formed from the same layer), a step for forming a contact hole, and a step for forming a pixel electrode. In the step for forming the contact hole, a groove portion is formed, whereby formation of a parasitic transistor is prevented. The groove portion overlaps with the wiring with an insulating layer provided therebetween.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: March 20, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 9917057
    Abstract: In one aspect, a method of forming a wiring layer on a wafer is provided which includes: depositing a HSQ layer onto the wafer; cross-linking a first portion(s) of the HSQ layer using e-beam lithography; depositing a hardmask material onto the HSQ layer; patterning the hardmask using optical lithography, wherein the patterned hardmask covers a second portion(s) of the HSQ layer; patterning the HSQ layer using the patterned hardmask in a manner such that i) the first portion(s) of the HSQ layer remain and ii) the second portion(s) of the HSQ layer covered by the patterned hardmask remain, wherein by way of the patterning step trenches are formed in the HSQ layer; and filling the trenches with a conductive material to form the wiring layer on the wafer.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Szu-Lin Cheng, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9917188
    Abstract: A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Darsen D. Lu, Ali Khakifirooz, Kern Rim
  • Patent number: 9911690
    Abstract: A structure having fully aligned via connecting metal lines on different Mx levels. The structure may include a first metal line and a second metal line in a first ILD, a cap covering the first ILD, the second metal line and a portion of the first metal line, a second ILD on the cap, and a via that electrically connects the first metal line to a third metal line, wherein the third metal line is above the first metal line and runs perpendicular to the first metal line, the via is fully aligned to the first metal line and the third metal line, and the via electrically connects the first metal line to the third metal line.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Nicholas C. Fuller, Elbert E. Huang, Satyanarayana V. Nitta, David L. Rath
  • Patent number: 9905605
    Abstract: The present disclosure relates to an image sensor having autofocus function and associated methods. In some embodiments, the integrated circuit has a photodiode array with a plurality of photodiodes disposed within a semiconductor substrate and a composite grid overlying the photodiode array and having a first plurality of openings and a second plurality of openings extending vertically through the composite grid. The integrated circuit further has an image sensing pixel array with a plurality of color filters disposed in the first plurality of openings. The integrated circuit further has a phase detection pixel array having a plurality of phase detection components that are smaller than the plurality of color filters and that have a low refractive index (low-n) material with a refractive index (n) smaller than a refractive index of the plurality of color filters, wherein the phase detection components are disposed in the second plurality of openings.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-I Hsu, Dun-Nian Yaung, Feng-Chi Hung, Keng-Yu Chou